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Abstract

A simple model is proposed and analyzed to explain anomalously high elastic nonlinearity
typical of solids with microinhomogeneous inner structure, such as polycrystalline solids,
grainy media, crack-containing solids, etc.

Introduction.

At present, there is a rather wide variety of so-called microinhomogeneous media which
demonstrate anomalously high and qualitatively unusual acoustic nonlinearity [1-4]. The
inner structure of such media is characterized by the presence of various inhomogeneities
and defects whose size is large compared with the inter-atom distance, but is small with
respect to the characteristic scale of the acoustic perturbation.

From the viewpoint of acoustics, the use of the ‘classical’ theory of nonlincar elasticity is
often insufficient to explain the anomalous nonlinear behaviour of these media. It is
realized now that the anomalous nonlinearity should be attributed to the influence of
structure inhomogeneities absent in ideal solids, in which nonlinearity is associated with
anharmonicity of the inter-atomic potential, which may be quite satisfactorily described by
conventional S-constant elasticity theory [2,4]. Creation of a model of micro-
structure-induced nonlinearity requires special .consideration of each particular type of
medium inhomogeneities, and that is, generally spcaking, a rather complex problem. There
are a few examples of such physical models, though only the simplest cases allow for a
relatively complete and consistent analysis. These physical models of structure-induced -
elastic nonlinearity are practically constrained by simplified considerations of granular [4,
5], rubber-like porous [6, 7], and crack-containing (8, 9] clastic media. The conclusions
derived from each of these models can be applied to the corresponding particular kind of
microiniomogeneous material, but are of limited use for generalization and application to
other types of medium defect.

An alternative approach, based on purely phenomenological reconstruction of a medium
‘stress-strain’ constitutive law can be applied for description of nonlinear effects in media
with rather different kinds of inner (micro)structure. Successful examples of the use of such
an approach can be found in [10, 11]. However, as the price for its wide working area, the
phenomenological description does not allow us to conclude anything about the inner
features of the medium described.

Below, a simple model of elastic nonlinearity is proposed, which may be characterized as
an intermediate case between the above-mentioned physical models applied to special types
of media and the modecls bascd on a purcly phcnomenological structure-independent
description. In the framework of the proposed approach, the elastic nonlinear properties of |
the model microinhomogeneous medium are determined and the role of structure
inhomogeneities in the increase of the elastic nonlinearity is pointed out. The relation of
the obtained results to real microinhomogeneous media is also discussed.

The medium model

Let us take as a base for consideration a popular model of one-dimensional elastic media
that is constructed as a chain of equal masses M and elastic clements-springs which for
simplicity’s sake are supposed to have equal lengths L. The typical wavelength A of elastic
perturbations that we shall consider is supposed to be large, A » L.
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The principal point of the model is that there are a certain number of very soft springs
(modeling the medium defects), the elastic coefficient ¥, of which is much less than the
elastic coefficient y; of other springs, %/%, =0 ¥ 1. The linear density of the chain elements
1s characterized by the value N, while the density of the soft inclusions is equal to &,. Then
let us suppose for convenience that the cross-section § of each elastic element has the unit
square, so the values N and N, may be considered as volume densities, and the elastic force
acting at each element corresponds to the elastic stress o in the medium.

In the long-wave (quasi-static) approximation the value of the elastic stress o is evidently
equal at each element:

o=yX= 1uX )]

and, therefore, the corresponding deformations X, of the soft and rigid clements X are
different :

X =(xx)X=0X>X. @

For the total deformation X' of the chain consisting of N elements Wc obtain, using the

above-introduced definitions: N-¥, N,

=Y x+}x. 3)
1 I

Substitution of (2) into (3) yields the following relation between the total chain deformation
and the deformation X of each rigid spring:

X'=XN[1+W/N)@~D] . 4

It follows from (4) that if all of the springs have equal rigidity (i.e. @ =1), the total
deformation Xt = XN, as it should be in the defectless chain. Then, dividing equation (4)
by the initial chain length ¥, the mean chain strain and the strain of each rigid spring X/L
may be related:

e=X/L [1+v(@-1)], (5)
where v=Ny/N is the relative density of the soft springs. Therefore it follows from (5) that
in the case of small density of the soft spring-defects (vQ < 1), their presence does not
practically affect the mean strain, whose value appears to be very close to the strain of the
defectless chain and, correspondingly, to each rigid spring strain.

To consider nonlinear corrections to the ‘stress-strain’ relation of the defect-containing
media it is necessary to specify the nonlinear elastic properties of each elastic element. Let
us suppose that the material of each spring is characterized by a small deviation from the
linear Hooke’s law: o= M ¢ (1-+f(g)), where f(g) <1, M = y/L. As a rather general case
we shall use a power-type nonlinearity law f(g) = I'™ gn=1, where I'® is a dimensionless
nonlinearity coefficient of the n-th order, n > 1. Therefore for the material of the rigid

springs we suppose that 6 =Meg (L +e-1T0) | ©
and for the soft spring material :

c=Me(l +e-'TW) , W)
where the linear elastic moduli are retated as M/M, = y/y; = Q. We suppose deliberately
that the nonlincarity cocfficients of the matcrial of both types of spring are of equal
‘normal’ (that is about several units, '™~ 10°) value. However, as will be shown in the

following section, the high contrast in just the linear elastic properties may lead to
anomalous growth of the mean elastic nonlinearity of the defected chain.

Nonlinear elastic properties of the defected chain.

To determinc the nonlinearity of the defect-containing chain we shall start from the relation
of the mean stress ¢ and the mean density of the elastic energy W:

o= oW/oe . 8

The mean energy density W is rclated to the elastic energy Wr and W* stored
correspondingly at each of the rigid and soft springs by the following evident expression:

Acoustics Letters Vol. 19, No. 9, 1996



Zaitsev 173

W=N-NW+NW*, &)
where the individual energies are determined by the deformations of the springs X and X;:

x .

W' =[MIEIL+TWE/L") dE (10)
0
X

W*=[ M, [E/L+T®EYL"] dE . an
0

Using relations (2), (8)—(11), after straightforward derivation we obtain the nonlinear
‘stress-strain’ relation for the inhomogencous medium:

M S 1-v+vQ"
Gge(l—-v+vQ){l+e IF()(l—v+vQ)"}' )

In the limit case of the homogeneous chain when Q =1 or v = 0, equation (12) coincides
with cquation (6). Thereforc the mean clastic propertics of the homogeneous chain
naturally coincide with those of cach elastic element.

Let us consider now the dependence of linear and nonlinear elastic properties upon the
density 0 < v <1 of the soft (Q » 1) springs. It follows from cquation (12) that the mean
nonlinearity coefficicnt I'%), . is equal to aT'®™, where

- 1+v(@Q"-1)
+we-n"

and the mean clastic modulus M, is cqual to PM, where

p=[1+v@-n]". (14)

It is evident from (13), (14) that, when the defect density is very small vQ* <1, both linear
and nonlinear mean coefficients are practically unchanged a=p=1.

When vQ <1, but vO" » 1, the mean nonlinear coefficient increases significantly (ot~
v@" » 1), unlike the linear modulus which still remains practically the same: f~s 1.

With further increase of the density v, when vQ » 1 but v« 1, the mean rigidity of the
defect-containing chain begins to deccrease (B~ (vQ)-1<1), but the mean value of the
nonlinear coefficient of the chain remains anomalously high (a asv1-» 1, as the exponent
n>1).

At last, when v—1 the elastic modulus of the chain becomes equal to the elastic modulus
of the soft springs (B = Q- therefore M,,,,= M/Q), and the nonlinear coefficient returns
to its normal value (o = 1).

The maximal value of ™ is reached at the optimal defect density

1 1 n 1 1
Yo =51 01~ n-1 g"—1 ~ (=Dg ‘1> ) .

13)

the corresponding value of the increase factor a(v,,) of the mean nonlinearity coefficient

being equal to:
(n — l)n—l

albp) A ——— o~ 'r1, 16)

while the relative variation of the linear elastic modulus is much smaller:;

Bla) ~ E ~ 1. an)

Conclusion.

Let us summarize the results of the above consideration of variability of mean linear and
nonlinear properties of microinhomogeneous (defect-containing) media.
The model gives a simple qualitative explanation for the anomalously high nonlincarity
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that has been observed in different experiments and has even been considered sometimes
as an experimental mistake, being in contradiction with traditional views based on
‘classical’ nonlinear elasticity of homogeneous solids.

Equations (12)~—(17) show that even a very small density of soft (Q <1) defects may cause
drastic variations of the medium nonlinearity (by several orders of magnitude) while its
linear acoustic characteristics may remain insignificantly perturbed. This statement is
corroborated by numerous experiments (see, e.g., [5, 10, 11, 12]) and is of great importance
for possible diagnostic applications of nonlincar effects.

The higher-order nonlinear parameters (for example, the cubic nonlinearity I'® com-
pared with the quadratic parameter T'® are influenced by the defects considerably more
significantly, as follows from (13)—(16). This statement also agrees well with experimental
data (see, e.g., [5; 12]). '

Though the considered simple model does not correspond directly to a particular real
microinhomogeneous medium, it offers clear heuristic guidelines for thc analysis of
concrete cases, as in each case one may easily recognize the model ‘soft springs’ in real
defects such as pores, cracks, inter-grain contacts, etc. The ways of complication of the
model are quite evident and may be considered elsewhere, though its simplicity and clarity
seem t0 be the main merits of the above discussed refined variant.

Note lastly that the above consideration was restricted to the analysis of the nonlincar
clastic properties themselves. Further, starting from the derived mean stress-strain relation
(12) one may readily obtain the nonlinear wave equation in the long-wave approximation

pd'u/ac =  dlorax?, (18)
where p=M/L. Then cquation (18) may be analyzed by conventional methods [2].
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