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Abstract: The nonlinear vibro-acoustic response of solid samples containinig quite a small amount of defects
can be anomalously high in magnitude compared to the case of undamaged intact solids. Functional de-
pendencies of the nonlinear effects exhibit rather interesting behavior In this paper, experimental results on
nonlinearity-induced cross-modulation of a high-frequency (HF) f = 15— 30 kHz signal by a low-frequency
(LF) F = 20 — 60 Hz vibration in an aluminum plate with a small single crack are reported. Comparison
with a reference sample (the identical plate without a crack) has proven that the presence of such a small de-
fect can be easily detected due to its nonlinear manifestations. It is demonstrated that under proper choice
of the sounding signal parameters, the effect level can be so pronounced that the amplitude of the modula-
tion side-lobes originated due to the nonlinearity exceeds the amplitude of the fundamental harmonic of the
HF signal. Main functional features of the observed phenomena are analyzed, and a new physical explana-
tion is suggested based on a dissipative mechanism of wbro-acoustlc interaction. Results of the numerical
simulation of the effect are also presented.
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1. INTRODUCTION

Nonlinear vibrational and acoustical effects in solids with microinhomogeneities have
attracted ever-increasing attention during the past years in view of their possible applications
in diagnostic problems (Antonets, Donskoy, and Sutin, 1986; Sutin, 1992; Rudenko, 1993;

Korotkov and Sutin, 1994; Zaitsev et al., 1995; Zaitsev, 1998; Johnson, Sutin, and Van Den
Abeele, 1999; Van Den Abeele et al., 1999). Conventionally in vibro-acoustic diagnostics,
nonlinear distortions are intentionally eliminated or simply neglected and the information on
the defects is extracted from the change of the linear response of the investigated sample
(Collacott, 1985; Richardson and Mannan, 1992; Fritzen, Jennewein, and Kiefer, 1998). On
the other hand, as experiments have proven, occurrence of quite a small amount of defects in a
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solid may change its nonlinear parameters by orders of magnitude while the linear properties
may be only slightly perturbed (Naugolnykh and Ostrovsky, 1998). Therefore, nonlinear
distortions of a vibrational (acoustical) signal can be used as a very sensitive indicator of
damage in the sample structure. Drastic differences in linear and nonlinear manifestations
of microdefects in solids are now confirmed by numerous experimental demonstrations
(Nazarov and Zimenkov, 1993; Johnson and Rasolofosaon, 1996), and general reasons of
such difference are comprehended theoretically (see, for example, Zaitsev, 1996).

However, the nonlinear effects are too rich in variety to be explained in a unified
way. It often happens that conventional quadratic or cubic nonlinearities of the material
constitutive equation that are used in “classical” theory of nonlinear elasticity are insufficient
to describe the observed phenomena (Naugolnykh and Ostrovsky, 1998). For example,
experiments indicate that the microstructure-induced nonlinearity is in many cases not of
purely elastic type, and sometimes it has a hysteretic or nonlinear-dissipative character
(Nazarov et al., 1988; Nazarov, 1994; Johnson and Rasolofosaon, 1996). The procedure
of identification of the type of nonlinearity is not evident. Apparently, the same nonlinear
effects (e.g., generation of combination- or subharmonics) may be caused by nonlinearities
of a different nature. To identify the particular nonlinear governing equation, it is necessary
to study detailed functional properties of the nonlinear response (for example, its amplitude
or frequency dependencies). Therefore, after first promising demonstrations (Antonets,
Donskoy, and Sutin, 1986; Korotkov and Sutin, 1994) of the high “structural sensitivity”
of nonlinear effects, further theoretical and experimental studies are required to reach a
better understanding of the phenomena, which should provide more reliable extraction of
information on the material structural changes from experimental data.

When setting up practical diagnostics, one should realize that the magnitude of the
nonlinear components can remain small compared to the linear ones, although the level of
nonlinear distortions in a damaged solid sample can be significantly increased due to the
influence of the defects. Therefore, for practical applications, one should avoid masking
nonlinear distortions both in electrical circuits and in vibro-acoustical actuators and sensors.
It is also important to choose the most sensitive and, at the same time, robust nonlinear
effects to observe. From that point of view, the use of the interaction (cross-modulation) of
vibro-acoustical excitations with significantly different frequencies yields several advantages
(Korotkov and Sutin, 1994). Such modulation effects are normally absent in weakly nonlinear
undamaged (intact) homogeneous samples, and their noticeable level indicates the presence
of some microstructure, for example, cracks in the investigated sample.

Since earlier observations of such nonlinear cross-modulation (Korotkov and Sutin,
1994), a whole series of experimental demonstrations of the effect was carried out in different
conditions (Sutin et al., 1995; Nazarov and Zimenkov 1993; Ekimov, Didenkulov, and
Kazakov, 1998; Johnson et al., 1999). In theory, the wave interaction in a damaged intact
sample with a single discontinuity-like defect was analyzed by Zaitsev et al. (1995). The
case of cross-modulation in a solid resonator made of a microinhomogeneous medium with
multiple microdefects was considered by Nazarov and Zimenkov (1993). However, in
many cases, those theoretical results are not sufficient to explain significant features of the
experimental results (especially those obtained for single cracks that are small compared to
the acoustic wavelength). Moreover, the simple intuitive deduction that a low-frequency
action changes the propagation conditions through the crack for the acoustic wave is
insufficient to explain satisfactorily the experimental results.
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In the next section, experimental data are presented on the cross modulation of a high-
frequency (HF) signal (f = 15 — 30 kHz) by a low-frequency (LF) vibration (F = 10 — 60
Hz) in an aluminum plate with a small single crack. Comparison with a reference sample
(the identical plate without a crack) has proven that the influence of such a small defect on
the nonlinearity of the sample can be easily detected. It is demonstrated that under proper
choice of the sounding signal parameters, the effect may be significantly increased up to
the extreme extent when the amplitude of the modulation side-lobes originated due to the
nonlinearity exceeds the amplitude of the fundamental harmonic of the initial HF signal.
Consequently, the discussion of main physical features of the observed effects is given.
Using the revealed functional features of the phenomena and the performed estimates, a new
physical explanation of the effects is suggested based on a dissipative mechanism that was
not accounted for in the previous theoretical analysis. The simulation results obtained in the
framework of the proposed mechanism are shown to be in agreement with the experimental
data.

2. EXPERIMENT

2.1. Experimental Setup

The experimental setup is schematically shown in Figure 1(a). As seen in the figure, the
sample (1), an aluminum plate (130 x 55 mm in sizes and 0.5 mm in thickness), was
mounted on a shaker (2) through an intermediate piezo-actuator (3). The LF vibrations of the
shaker and the HF oscillations of the piezo-actuator were controlled by independent signal
generators (4), (5). Therefore, it was possible to excite simultaneously an LF vibration and
an HF acoustic signal and to exclude the mixing of the signals in electrical circuits and in
the actuators. The plate was tightly glued in its center to the piezo-actuator. Vibro-acoustic
response of the plate was registered by lightweight accelerometers (6), (7), (8) located at the
plate edges and in the center. After amplifier (9), the forms of the signals were monitored
by a two-channel oscilloscope (10) and their spectrum was analyzed by a two-channel signal
analyzer (11).

Two initially identical samples were used in the study. The plate without defects served
as a reference sample. The second plate had a small transversal crack S mm in length located
at 50 mm from one of the short plate edges (as shown in Figure 1(a)). The in-plane location
of the crack in the plate is shown in Figure 1(b). The crack was previously produced due to
vibrational fatigue at intensive vibrations of the plate clamped to the shaker.

The shaker excited the lowest bending mode of the plate. Resonant frequencies of HF
vibrations were influenced by the exact position of the accelerometers and by the position of
the connection with the exciter. However, for the effects described below, exact identification
of the HF modes was not very important.

Note, finally, that the strain amplitude of the LF vibration was always higher (by the order
of magnitude or more) than the strain amplitude of the HF vibration. Unlike the strain itself,
the velocity of the strain change for the LF vibration could be already comparable or even
significantly less than that of the HF oscillations due to the large difference in the high and
low frequencies (f/F ~ 500 — 800).
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Figure 1. Schematically shown the experimental setup (a) and the in-plane location of the crack in the
sample (b).

2.2. Results of the Observations

As it was mentioned in the introduction, the observation of the cross modulation of the HF
signal under simultaneous excitation of the plate at low and high frequencies was used to
detect nonlinearity of the samples. Both plates were exposed to the same excitation level in
the same frequency band. The response of accelerometer 7 located at the connection region
can be considered as an “input” signal and the signal of the side accelerometers corresponds
to an “output.” Such distinction is more valid for the LF vibration and is certainly only
approximate to the HF case. In the response at LF, both plates behaved rather similarly: the
lowest bending resonance of both plates was about 60 Hz. Both the LF and the HF resonance
frequencies changed by a few percentage points when the positions of the accelerometers
and of the connection region were changed by 1 to 2 centimeters. Thus, there was no definite
distinction between the plates in their linear response. Quite different was the situation for
their nonlinear response at the higher frequencies.

First, the HF response of the undamaged sample was studied. Under simultaneous
excitation of both the LF and the HF vibrations, weak modulation side-lobes at f -+ F were
observed around the fundamental frequency f. The amplitude of the side-lobes increased
proportionally to excitation amplitudes at both initial frequencies. The modulation was
distinguishable at the side (see Figure 1(a)) accelerometers 6 and 8, and it was practically
below the noise level for the central accelerometer 7. For different frequencies f within
the band 15 to 40 kHz, the level of the modulation varied only slightly However, even at
a rather intensive LF vibration, the level of the side-lobes remained 60 to 40 dB lower than
the central line f. A typical example of the spectrum at intensive excitation of the reference
intact sample is shown in Figure 2. In the figure, the difference in the level of the side-lobes
compared to the central line is about —51 dB.

For the damaged sample under analogous excitation conditions, the cross-modulation
looked significantly different both quantitatively and qualitatively. First, the level of
modulation was considerably higher (by 20 or even up to 50 dB). The corresponding example
for exactly the same frequencies and the same LF acceleration as shown for the reference
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Figure 2. Modulation spectrum for the reference sample.
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Figure 3. Modulation spectrum for the damaged sample at the same conditions as for Figure 2.
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Figure 6. Relative level of the first (1 and 1) and the second (2 and 2’) modulation side-lobes against
the amplitudes of the LF vibration. Crosses, the damaged sample; triangles, the intact sample. The solid
best-fit lines correspond to the linear dependency; the dashed line corresponds to the power law with
exponent equal to 1.3.

sample in Figure 2 is presented in Figure 3 for the damaged plate. In this case, the relative
level of the first-order side-lobes is already —27 dB (that is, 24 dB higher compared to —51 dB
in Figure 2). Second, in most cases, the modulation spectrum contained significant amounts
of higher side-lobes at frequencies f + nF, sometimes with numbers 7 up to 10 to 15. An
example of such a rich spectrum is shown in Figure 4. The level of the LF vibration was even
significantly lower compared to the case shown in Figure 3.

It is interesting that in this figure the level of the second- and third-order side-lobes is even
higher compared to the first-order ones. The spectral features varied significantly with change
of the high frequency, but the level of the side-lobes always was at least 10 to 15 times higher
than in the reference sample. At some frequencies, the modulation was extremely strong,
so that the central (fundamental) spectral line was several decibels lower than the side-lobes
(see example in Figure 5).

Comparison of Figures 2 through 5 demonstrates that the nonlinear response of the
damaged sample was drastically different from that of the undamaged reference plate. The
modulation spectra essentially differed in their qualitative appearance, and quantitatively the
level of the side-lobes in case of the damaged sample was increased by 10 to 15 times at least.

Figure 6 shows the quantitative difference between the damaged and the intact samples
in the amplitudes of the first- and second-modulation side-lobes relative (in decibels) to
the amplitude of the fundamental HF harmonic. The dependencies shown in this figure
correspond to the spectral forms similar to those presented in Figures 2 and 3. The relative
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Figure 7. Temporal record of the vibration in the damaged sample at a strong modulation.

level of the modulation in the damaged sample is more than 20 dB higher for the first side-
lobe, and more than 40 dB higher for the second side-lobe. The slope of the best-fit lines
in the log-log plot in Figure 6 indicates that in both samples the amplitude of the first side-
lobes depends approximately linearly on the LF vibration amplitude in the LF dynamic band
presented in the figure. Further on at higher modulation level, the first-order side-lobes
increased more slowly, but a rapid growth of higher order side-lobes was observed (we shall
discuss those features in more detail in the next section). Figure 6 shows also that even at
moderate modulation, the higher order side-lobes in the damaged sample increased more
rapidly with the increase of the amplitude of the LF vibration (see the dashed best-fit line for
the second-order side-lobes in Figure 6).

It is significant that at some frequencies f, the change in the amplitude was rather
pronounced not only for the modulation side-lobes but also for the fundamental harmonic
itself. Moreover, the effect looked apparently irregular since sometimes either increase or
decrease in the amplitude of the fundamental harmonics was observed. We shall return to the
explanation of such features in the discussion in the following section.

Finally, besides the time-averaged spectral parameters, the setup allowed for direct
observation of the temporal dependence of the HF signal level at different phases of the LF
vibration. An example of such a time record made by a two-channel digital oscilloscope is
shown in Figure 7. This example corresponds to the higher amplitude of the LF vibrations.
The lower record displays the input signal of accelerometer 7 where both the LF and the HF
signals are present. The upper record shows the output of accelerometer 8, but the LF signal
component is filtered out by a high-pass filter. There is a strong modulation of the HF output
signal. In the spectral representation, such a modulation corresponded to the occurrence of
strong multiple side-lobes (f + nFn = 1,2,3,...) as shown in Figures 4 and 5.

Summarizing the experimental data, it may be concluded that introduction of a weak
damage (a small fatigue crack) caused a drastic increase in nonlinear vibro-acoustic response
of the damaged sample. Those nonlinear modulation effects allow for easy distinction
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between the damaged and the intact reference sample. In the next section, we shall discuss
the main features of the observed phenomena in more detail.

3. DISCUSSION

3.1. Does Elastic Nonlinearity Suffice to Explain the Observed Modulation?

The answer to this question is not evident as, in principle, pure elastic nonlinearity of
contacts between the crack edges may cause both phase and amplitude modulation of a wave
transmitting through the crack. Such a problem was analyzed, for example, in Zaitsev et al.
(1995). It was mentioned that for small deformation of a crack under the influence of the
LF vibration, one can use the Tailor expansion of the effective relation between the stress
applied to the crack and its strain. Then, the main (first) nonlinear term in the “stress-strain”
relation should be quadratic in the deformation. However, this term is not sufficient to explain
the occurrence of numerous intensive side-lobes f + nF in the modulation spectrum due
to the interaction of the initially excited harmonics with frequencies F and f. In case of
the quadratic nonlinearity, only the first side-lobes should be observed in the modulation
spectrum. One may argue that those components could be attributed to the existence of
initial LF spectral components nF (n = 2, 3. . .), which are transformed to higher frequencies
f = nF due to the quadratic nonlinearity. Indeed, due to the own nonlinearity of the shaker,
several higher components occurred in the initial spectrum of the LF excitation, but their
initial level was too small to explain the existence of very high side-lobes like those shown
in Figures 3 and, especially, 4 and 5. The same discrepancy was observed in the experiments
(Ekimov, Didenkulov, and Kazakov, 1998) on vibro-acoustic cross modulation due to a
cracklike defect for torsional HF and longitudinal LF waves in a rod sample.

One may also assume that in case of significant closing and opening of the crack under
the LF action, it is more reasonable to approximate the effective stress-strain relation for the
crack by some almost piecewise function (like a piecewise-linear characteristic of a diode in
electronics). In principle, for such a type of the nonlinearity, numerous spectral side-lobes
could be produced when an HF wave is propagating through the crack that is “breathing”
in a piecewise manner under the action of purely sinusoidal LF excitation. However, in the
discussed experiment, the interaction process cannot be treated as the quasi-one-dimensional
propagation of the HF wave through the breathing crack, like it was considered in Zaitsev
et al. (1995). Namely, in the discussed experiment, the crack was too small and could not be
considered as an effective screen even for the HF waves. Its sizes both in thickness and in
length were much smaller than the HF wavelength and the transversal size of the plate.

To estimate the influence of a crack in such a case, one can use another approach. Let us
take into account that the amplitude of strain in LF excitation is strong compared to the strain
in the HF signal. Therefore, we can consider the breathing of the crack as a given motion
under the action of the LF excitation. Thus, to estimate maximal influence on the HF signal,
it is enough to compare the extreme cases when the crack is totally closed and totally opened
under the LF action.

Then, one could take into account that the size of the plate in its axial direction was several
times greater than that in the transversal direction. Therefore, the plate could be considered as
a quasi-one-dimensional structure along its axis. Thus, we may describe the plate as a rod or
a beam with a small crack in one of its cross sections. When the crack is closed, the structure
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is uniform along its axis, so that effective modulus E of the axial stiffness of the plate-beam
E(x) = Eg = const. When the crack is opened because of the applied LF flexural action,
the effective modulus becomes inhomogeneous along the axis: E(x) = E, + 6E (x). The
localized decrease 9 E(x) of the plate stiffness can be approximated by a IT shape form:
E(x) = { OAE, at x € [xg,x0 + 1] a

, at x & [xo,x0 + 1]

where xo is the crack position and / corresponds to its thickness. The value of the decrease
AE is easily related to the defect geometry. As the crack cuts the whole thickness of the
plate, the maximal value of the stiffness decrease AE is determined by the crack length 4 in
the transversal direction to the plate axis:

AE/Ey ~ h/H, )

where H is the plate width,

Now it is possible to estimate the influence of the crack on the natural frequencies of
the plate. For example, we can consider the case of lowest HF modes of longitudinal waves,
which should have practically uniform structure along the plate width for the used frequencies
S =15 — 30 kHz. Then, the wave equation for the longitudinal stress o along the plate axis
takes the form

Ou — ?Un = 0. E)

Equation (3), together with boundary conditions at the plate ends x = 0 and x = L,
determines the mode structures ¢, (x) along the plate axis and the modal natural frequencies
®, . Neglecting the masses of the accelerometers, we can write that

a(0) =a(L) = 0. “)

For boundary conditions (4) and the uniform stiffness E(x) = Ej, equation (3) yields the
following for the unperturbed modal functions:

¢, (x) = sin(mnx/L). 5)
Assuming the harmonical dependence of stress 0 o« exp(iwt) and using the conventional

procedure of the perturbation theory, one could obtain the expression for the relative change
of the normal mode frequencies:

dw, f ; JE(x) P37 (x)dx

5 (6)
@, 2 f0 <p,, (x)dx
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Therefore, in the discussed case, equations (1), (5), and (6) yield for the perturbations of the
modal frequencies

awn/wn zSin2 (ﬂ'nxo) IA_'E

L JLE, O

It is evident from (7) that the exact knowledge of the boundary conditions and the
corresponding exact modal forms are not significant for the estimate of the maximal effect of
the crack. Indeed, for quantitative estimation of the maximal possible influence of the crack,
it is enough to take into account that sin® ( nxo /L) < 1. It should be also taken into account
that the crack thickness / in the experiment was not larger than 0.1 mm. Thus, for the plate
axial length L =~ 130 mm, we obtain that the relation //L < 7.7 10~%. Furthermore, taking
into account the crack length 2 < 5 mm and the plate width H =~ 50 mm, equation (1) yields
that the relation AE/E, =~ h/H < 10~!. Substitution of those estimates in equation (7)
gives for the shift of the resonant frequency:

00 /@n| = 6.0/ fa| <7.7-1075, | ®)

where f, = w,/(27). The real value of the perturbation should be even significantly
smaller, as estimate (8) corresponds to the difference between the extreme cases when the
crack is fully opened or fully closed. In the given test conditions, the crack cannot be
opened or closed totally by the LF vibrations. But even the highest estimate (8) for the
used frequencies at 15 to 30 kHz corresponds to the maximal possible shift d f, of the
normal mode frequencies f, by about 0.5 to 1 Hz. Typical width A f,, of the resonance
peaks in the experiment was about 150 to 200 Hz (which corresponded to the quality factor
Q= f./Af, =100 — 150). Therefore, to explain the observed strong modulation effects
by a shift of the resonance frequency, the resonance shift § f, should be comparable with the
width A f,, of the resonance peaks. That is, there should be d f, ~ 10 — 100 Hz, which is
almost 2 orders of magnitude higher than the maximal estimate (8).

The above estimate was derived for the case of the wave equation (3) for a longitudinal
wave; however, those results are not limited to the longitudinal waves. Indeed, for the bending
waves in a thin plate, the displacement ¢ obeys the fourth-order wave equation instead of the
second-order equation (3) (Landau and Lifshitz, 1986):

D)

pde =0, ©)

{tt
where D = Ed®/12(1 — v 2),d is the plate thickness, v is the Poisson ratio for the plate
material, and p is its density. Evidently, the relative disturbance of the bending stiffness
dD(x) /D is the same as S E(x) /E. Although the natural frequencies themselves are different
for the longitudinal and the bending waves, equation (9) yields the same results (6) and (7)
for the relative perturbation of the natural frequencies as it was obtained from equation (3).
Consequently, the quantitative estimate (8) remains the same for the bending waves. Thus,

the conclusion that the observed modulation cannot be attributed to the perturbation of the
plate natural frequencies remains valid for the bending modes also.
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Table 1.
Unr (V) 2 5 6 10
Ao/ Ao 1.34 1.35 1.35 1.37

3.2. Main Features of the Dependence of the HF Signal Losses on the LF Action

The above-mentioned qualitative features of the modulation and the quantitative discrepan-
cies between the estimates and the measurements lead to the conclusion that the observed
effects could not be caused by the influence of the LF vibration via purely elastic nonlinearity
of the system. Therefore, we should admit that the observed modulation was caused by some
nonlinear mechanism of the influence of the LF vibration on the losses of the high-frequency
wave. To describe and simulate the physical origin of the phenomena, it is necessary to reveal
the main functional dependencies of the observed effects.

Let us discuss the main time-averaged functional dependencies of the LF-induced losses
that were experimentally elicited. First, the HF excitation was tuned to an HF resonance
of the sample (for example, /' = 20085 Hz), and the amplitudes of the fundamental HF
harmonic were compared when the LF action was switched on or turned off. The level of
the LF vibration was fixed, while several different amplitudes of the HF excitation were used
in the measurements. It was revealed that due to the LF influence, the amplitude of the HF
fundamental harmonic decreased by the same factor for different levels of the HF excitation.
This statement is illustrated by Table 1, in which Uyr is the voltage of the HF generator
and A4, /Ao is the relation of the amplitudes of the HF fundamental harmonic when the LF
vibration was switched off and turned on, correspondingly.

Then, it was noticed that the amplitudes of the side-lobes f + nF were linearly
proportional to the amplitude of the fundamental HF harmonic at given LF amplitude.
This statement is illustrated by Figure 8, where the amplitudes of the fundamental and the
lowest four modulation harmonics are plotted against the voltage amplitude Uz of the HF
generator. The results presented in Figure 8 were obtained for a resonance peak f = 26210
Hz at moderate amplitude of the LF vibration (that is, the spectrum form was similar to those
shown in Figure 3). Other resonance peaks demonstrated similar dependencies. These results
indicated that the HF losses remained linear in the amplitude of the HF excitation, although
they were dependent on the LF vibration amplitude.

In such a case, for the HF signal, the total decrement  (that is conventionally defined as
a value inversely proportional to the quality factor Q = 7 /6) can be written in the following
form:

0=0,+8,. (10)

Here, 0; corresponds to linear losses when the amplitude of the LF action tends to zero and
6, = 0,(ALr ) corresponds to the change of the decrement due to the influence of the LF
vibrations. To estimate the dependence 8, (4~ ), another series of measurements of the HF
harmonics amplitude was carried out at given HF excitation levels and different LF vibration
amplitudes (the same HF resonance was used). The results are graphically shown in Figure 9.
It is essential to note that at lower amplitudes of the LF vibration (below —25 dB in the scale
of Figure 9), the absolute value of the decrease of the fundamental harmonic amplitude was
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Figure 8. Dependencies of the fundamental HF harmonic (n = 0) and the modulation side-lobes
{n = 1 — 4) on the amplitude of the HF excitation. The solid lines correspond to the linear law.
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Figure 9. Dependencies of the fundamental harmonic (crosses) and the first modulation side-lobe
(diamonds) on the amplitude of the LF vibration. The solid line corresponds to the linear dependence.
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Figure 10. Period-averaged < 8.(Arr) > as a function of amplitude A, r (recalculated from the data
presented in Figure 9). The solid line corresponds to the power law with exponent 1.5.

significantly (several times) less than the amplitude of the modulation side-lobe. The latter
depended almost linearly on the LF vibration amplitude at the lower excitation (the solid line
in Figure 9 corresponds to such a linear dependence). With further increase of the LF vibration
amplitude, the first-order side-lobe got to saturation, whereas pronounced multiple higher-
order side-lobes appeared in the spectrum. The decrease of the fundamental HF harmonic
became also more pronounced at higher amplitudes, as it is shown in Figure 9.

Attributing the decrease of the fundamental harmonic to the additional losses 8, (A.r )
(according to equation (10)), the decrease of the fundamental harmonic can be recalculated
to the dependence < 6, (4, ) >. Here the angle brackets denote the averaging over the
period of the LF vibration. Thus, we may estimate the averaged additional losses as

_2m (Ao (Air) _
<0, (A ) >= s ( 40 (0) 1), (11)

where () is the initial quality-factor of the resonance peak at 4, = 0. It was determined
that for the resonance f = 20085 Hz to which the data plotted in Figure 9 correspond, the HF
resonance peak width at —3 dB level was A f =~ 200 Hz. The corresponding quality factor
Qo = f/Af = 100. Using this estimate together with the data plotted in Figure 9 and
expression (11), the averaged value < 8, (4.7 ) > was calculated. The obtained dependence
is presented in Figure 10. It appeared to be close to a power law 8, o A7, with exponent
g = 1.5, which was determined by the slope of a best-fit line in the log-log plot. Analogous
measurements were carried out for other HF resonance peaks, which gave similar results
(both qualitatively and quantitatively) to that described above.
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Figure 11. Qualitative behavior of the nonlinear Iossés (the solid curve) and their approximation by a
piecewise function (the dashed curve).

Note that the obtained period-averaged function < 8, (4.r ) > may be significantly
different compared to the instantaneous dependence 6, (4.r ). To reconstruct the latter, it is
necessary to take into account the direct temporal observation of the amplitude modulation
of the HF signal in addition to the spectral (time-averaged) measurements. Example of such
a temporal record is presented, for example, in Figure 7. The figure shows that there is
significant difference in the amplitude of the HF signal between different half-periods of the
LF action. The latter fact indicates that the transversal structure of the crack was essentially
asymmetrical. Indeed, in case of a symmetrical structure of the crack, there should not be such
a difference between bending of the plate at positive and negative angles. If the crack were
symmetrical, only even modulation harmonics (f & 2F f + 4F,. . .) should be observed. In
reality, at low excitation, mainly the first modulation harmonics f + F were noticeable instead
of f + 2F.

To explain the observed variety of spectral and temporal properties, one should admit that
at lower amplitudes, the nonlinear additive 8, is almost a linear antisymmetrical function
of the LF deformation 8, (4;r ) o< A;r . This approximation looks rather natural as the
first term of the expansion of 6, (4.r ) into the Tailor series at A;r — 0. Indeed, for
such a law, there should not be change in the amplitude of the fundamental harmonic at
lower amplitude 4, , as function 8, (4, ) is almost odd and the period-averaged additional
losses are absent. However, instantaneous change of the decrement 8, (4~ ) is proportional
to the instantaneous value 4,r (f), which should produce the first-order modulation side-
lobes in the spectrum. Then, one should admit that at higher amplitudes 4;r , function
6, (ALr ) should demonstrate noticeable asymmetry and tendency to saturation. The latter
properties are essential to explain the asymmetry in the modulation (see the temporal record
in Figure 7) as well as the saturation in absorption and the rapid growth of higher-modulation
harmonics with the increase of the LF vibration amplitude. In Figure 11, the solid line
shows qualitatively the above-mentioned features of the nonlinear variation of the HF losses
0, (ALr ). Certainly, one may choose various analytical approximations for such a function
to fit the observation results. For example, for numerical simulation, it is convenient to
approximate such a dependence by a piecewise-linear function (the dashed line in Figure 11).
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3.3. Hysteretical or Purely Dissipative Nonlinearity?

The analysis of the experimental data in the previous section allowed for the
phenomenological reconstruction of the functional form of the nonlinearity-induced losses.
However, such a reconstruction yet does not give an idea on the physical nature of the
effect, and it is interesting to discuss this question too. For example, the best known
type of material nonlinearity that influences both the elastic properties and the absorption
of vibrations is the hysteretic nonlinearity. It is well-known (Naugolnykh and Ostrovsky,
1998) that in case of hysteretical nonlinearity, the losses due to hysteresis are dependent
on the excitation amplitude. However, in our experiment, the losses of the HF vibration
depended only on the LF vibration amplitude but behaved as conventional viscouslike linear
losses with respect to the amplitude of the HF oscillations. Further on, if the losses were
caused by a hysteretical nonlinearity, they should be accompanied by a noticeable change
in elastic (reactive) properties of the system, that is, there should be the shift of resonant
frequencies. However, in the experiment, the significant change in the signal amplitude
was not accompanied by a comparable change in the resonance frequencies. Therefore, we
cannot accept the assumption that the nonlinear mechanism has the hysteresis character. It is
necessary to admit that the LF action significantly influenced just the dissipative properties
of the system without significant effect on its elastic properties.

Alternatively, the observed viscouslike HF losses may be attributed to the thermal
dissipation of the acoustical energy at the contacts of the crack edges. Despite the small
volume of the crack, those losses are significantly increased due to high-temperature gradients
at the vicinity of the crack edges. Those gradients are not determined by the acoustic
wavelength, but by the scale of the interedge microcontacts that is significantly less. A
similar thermal mechanism is responsible for the anomalously strong sound dissipation in
polycrystalline media (see Landau and Lifshitz, 1986). This effect alone might give the
increase of the thermal losses by 2 to 3 orders of magnitude and more (depending on the
vibration frequency). In our case, however, there is an additional important strong factor:
the increased amplitude of the deformation of the microcontacts inside the crack, as they are
much softer (also probably by 2-4 orders) compared to the stiffness of the surrounding intact
material. Those combined factors could cause the thermal losses at a rather small crack; which
are comparable to other losses in the whole sample. In principle, such a strong dissipation in
a cracked material is a well-known effect, for example, for a cracked glass. In the discussed
experiment, the applied LF action changed the amount and the stiffness of the contacts at the
crack, causing the modulation of the viscouslike thermal losses of the HF waves.

3.4. Resonance Effects

Resonant effects are also essential for the comprehension of the experimental results. As the
modulation frequency (in most cases, about 15-30 Hz) was an order of magnitude smaller than
the width of the resonance peaks, it is possible to consider the influence of the LF vibration
as a quasi-static action. Then, in the maximum of a resonance peak, it is possible to estimate
the HF sample response Ayr (f) (and then to obtain the modulation spectrum) by simple
multiplication of the HF sinusoidal input signal and the quality-factor O(f) = 27 /(6,+6,),
which is influenced by the LF vibration though decrement 8, = 8, (4.r (¢)):
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Figure 12. Example of the simulation of the modulation spectra at lower (left) and higher (right) LF vibration
amplitudes.

w -sin (2w f - 1)

Aar (1) o sin(2m S )- Q) = g0 o F )

(12)

where 4,7 (f) = A); - sin(2r F - t). For the numerical simulation, it is convenient to use
the piecewise-linear approximation of 6, (4, ) as it is shown in Figure 11. Examples of the
calculations are presented in Figure 12. In the figure, for the lower LF vibration amplitude
that falls within the initial linear part of the dependence 8, (4~ ), only the first side-lobes
are noticeably present (left part of the figure). At a higher level when the saturation of the
function 6, (4. ) is important already, multiple f + nF side-lobes pronouncedly appear in
the modulation spectrum (right part of the figure).

In addition to the resonance case, another convenient possibility to observe the
modulation is the use of narrow antiresonances. In case of a deep enough antiresonance,
the central line at the fundamental frequency can be suppressed while the modulation side-
lobes could become even higher, as it was shown in Figure 5, which was obtained just at one
of the sample antiresonances. Unlike a resonance, in an antiresonance, additional losses may
cause not the decrease, but the increase of the amplitude of the fundamental HF harmonic.

The above-mentioned features of the antiresonance case gave a possibility to verify
the conclusion on the decisive role of the dissipation factor by carrying out the following
instructive experiment. First, the HF excitation was tuned to an antiresonance of the damaged
plate, and a strong modulation spectrum was obtained (see Figure 13(a)). Then several light
and soft porous rubber strips were stuck to the plate surface to introduce additional HF losses
with minimal perturbation of the sample mass and stiffness. The strips caused the decrease
of the sample Q-factor by more than 2 times, which was checked later on by measuring the
widths of a few resonance peaks. As for the modulation, the relative level of the modulation
side-lobes decreased by about 20 dB (see Figure 13(b)), which should not happen if the
nonlinear elasticity were responsible for the modulation. Besides the decrease of the side-
lobes, Figure 13 shows that the introduction of the strong additional losses caused the increase
of the amplitude of the fundamental harmonic by 5 dB, which was also expected for the
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Figure 13. The modulation spectrum for the damaged sample before (a) and after (b) the introduction
of additional losses by sticking the rubber strips.

antiresonance case. Thus, the observed variety of the measured functional dependencies and
other features of the modulation is self-consistently explained by the suggested dissipative
mechanism.

4. CONCLUSIONS

Experimental results presented in the paper are an interesting example of a rather strong
nonlinear vibro-acoustic manifestation of a weak damage in a solid. The obtained data show
that the modulation nonlinear effects could be effectively used for detection of even small
cracklike defects in a metal sample. The performed estimates proved that the influence of the
crack on the change of the sample linear stiffness (and, therefore, on conventionally measured
resonance frequencies) was negligibly small and could be hardly detected by conventional
linear methods.
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The observed variety of features of the nonlinear vibro-acoustic interaction is self-
consistently explained by the influence of the LF vibration on the thermal viscouslike losses
of the weak HF oscillations due to deformation of the contacting crack edges. Certainly the
suggested dissipative mechanism is not the unique one, and, at different conditions, other
mechanisms (elastic or hysteretic nonlinearities) may be also important. In particular, the
vibro-acoustic interaction due to the elastic nonlinearity of a crack (Zaitsev et al., 1995)
should be important when the crack square is comparable to the cross section of the whole
sample. However, the results obtained in the present work indicate that for small cracks that
cannot perturb significantly the sample stiffness, the proposed dissipative mechanism of the
nonlinear interaction plays the main role. Therefore, the use of nonlinear effects associated
with the modulation of the dissipation might be a very effective tool for crack diagnostics.
The revealed features of the mechanism allow for better choosing of the parameters of the
vibro-acoustic action to provide the best conditions for defect diagnostics.

Note, finally, that the described study was aimed primarily at revealing the mechanism
of the nonlinear response of a small crack, while the important question about the damage
location was omitted. In principle, a combination of a time-gating procedure (which is
conventional for linear acoustic nondestructive testing) with the observation of nonlinearity-
induced signal components can be suggested to provide spatial resolution in nonlinear
diagnostics. Such a principle was discussed, for example, in Zaitsev et al. (1995). However,
simple time-gating can eliminate resonance effects, the use of which is very advantageous
for high sensitivity of crack detection. Alternatively, to provide spatial resolution by means
of local excitation of a defect, resonance vibration modes with different shapes can be
used. Therefore, it is difficult to suggest a universal solution, and particular cases of sample
geometry and defect type require special consideration.
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