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Summary

Elastic properties and sound absorption in a solid containing isotropically oriented highly compliant microinhomo-
geneities are theoretically analysed. The suggested model describing microinhomogeneous media can be applied to a
wide class of materials, such as rocks, concretes and other solids with similar microinhomogeneous structure. Using
the model, expressions for the elastic moduli, the Poisson ratio and the decrements for the longitudinal, the Young
(rod) and the transversal elastic waves in isotropic microinhomogeneous materials are derived. Inter-relations of the
microstructure of the solid, its elastic and dissipative properties are analysed. The results allow for prediction of the
absorption in the material and of the complementary change of its elastic parameters without detailed knowing of
viscoelastic properties of the defects. The obtained conclusions are shown to be in a good agreement with existing
phenomenological theoretical approximations and with known experimental data on elasticity/attenuation in rocks and

in some other microstructured solids.

PACS no. 43.20.Hgq, 43.20.Ir, 43.35.Cg, 91.60.Lj

1. Introduction

Materials with microinhomogeneous structure have been at-
tracting ever-increasing interest to study their acoustic prop-
erties which are significantly different from the ones typical
for homogeneous samples of amorphous solids and single
crystals [1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
This refers to a very wide class of apparently different ma-
terials such as rocks, concrete and similar construction ma-
terials, grainy media, polycrystalline metals, etc. Seemingly,
recently synthesized nano-crystalline solids [16] can also be
put in the same class. Those media in many cases are charac-
terized by anomalously high elastic nonlinearity compared
to the above mentioned “normal” homogeneous solids. In
addition, in the same microinhomogeneous materials, elastic
wave dissipation is also significantly increased in magni-
tude, while functionally their absorption coefficient is ap-
proximately proportional to the frequency in contrast to the
quadratic-in-frequency law typical for “normal” viscous ab-
sorption.

Recently, a series of papers was published [17, 18, 19, 20,
21} in which the mentioned elastic and dissipative properties
were considered in the framework of an instructive model of a
microinhomogeneous solid. Those anomalous properties ap-
peared to be consistently explained as complementary man-
ifestations of material micro-defects which are significantly
softer compared to the surrounding intact matrix material.
The models [17, 18, 19, 20, 21] allowed for explanation of
main features of the phenomena and made it possible to deter-
mine the relation between the material microstructure and the
acoustic properties of the medium. In these papers, however,
the models were considered in 1D approximation, although
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the theoretical approach itself based on the energy balance
was not essentially restricted to the 1D-case. Therefore, the
results derived in these works were qualitatively valid for
real materials also, although numerical estimates are appli-
cable to the 3D case only with an accuracy within an order
of magnitude. Besides, some essentially volumetric features
(for example, the difference between the Young modulus and
the elastic modulus for the bulk longitudinal wave, and the
difference between the corresponding decrements) could not
be accounted for in the 1D approximation.

In this paper, the theoretical approach and the microinho-
mogeneous medium model suggested in (17, 18, 19, 20, 21]
are generalized for the 3D case. However, here we restrict
our consideration to the linear approximation in order to an-
alyze the absorption of elastic wave energy in an isotropic
microinhomogeneous medium for different types of waves
as well as to determine the change of the material elastic
moduli and the Poisson ratio.

2. Main features of the material structure and the
defect properties

In the present consideration, the main qualitative features
of the model of microinhomogeneous media suggested in
{17, 18, 19, 20, 21] are conserved. Namely, it was already
noted that microinhomogeneous solids always posses some
microstructure (grains, cracks, etc.) with a characteristic
scale which is larger than the atomic size, but small com-
pared to the acoustic wavelength [17, 20]. It is essential
that in many cases the mentioned defect-inclusions are much
softer than the surrounding defect-free material, whereas the
compliance of the inclusions being ranged over a rather wide
band. At a given stress, due to the high compliance of the
defects, their local strain (and the velocity of strain changes)
is much higher compared to the mean strain (and strain ve-
locity) of the medium. Consequently, both the dissipation of
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the wave and the volume density of the elastic energy are
significantly (by several orders of magnitude) increased at
the defects compared to the surrounding homogeneous and
more rigid material. That is why even a small density of
such defects can change pronouncedly the mean acoustical
properties of the material. This leads to a series of interest-
ing conclusions on linear and nonlinear elastic, dispersive
and dissipative properties of microinhomodeneous materials
even in the 1D representation of the model of the medium
(see details in references {17, 18, 19, 20, 21]). In order to
provide more rigorous accounting for features of real solids,
let us specify now the defect properties implied in the 3D
model.

It is essential that the soft defect-inclusions in a solid can
be considered as some planar (disk-like) objects, which can
correspond, for example, to real cracks with the nearest layer
of adjacent intact material (see Figure 1). The planar geom-
etry of the discontinuity-like defects is necessary to provide
their high compliance. Indeed it is well known that in “nor-
mal” solids (whose Poisson’s ratio 7 is not very close to
the “liquid” limit v = 0.5 typical for a special class of the
so-called rubber-like materials), the effective compressibil-
ity of near-spherical cavities is of the same order of mag-
nitude as the compressibility of the intact matrix material
[8, 10]. However, planar defects can be strongly compliant
in normal solids (metals and rocks) with the Poisson ratio
v<04...045(1,2,8,10].

When stress is applied along the axis normal to the defect
plane (see Figure 1a), the defect deformation in this normal
direction (change of the defect thickness X,,) can be related
to the applied stress via an effective elastic modulus E; =
CE, where E is the Young modulus of the matrix material,
and ( < 1 is the parameter of the defect compliance in the
normal direction. By definition, the compliance parameter ¢
belongs to the interval 0 < ¢ < 1. If the area of a disk-like
defect is equal to S and its thickness is L < VL, then the
normal component of stress o, in terms of the introduced
notations is related to the variation of the thickness by the
following equation:

S S

Therefore the elastic energy accumulated by each defect due
to the work of the normal stress is given by:
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Here V; = S L is the defect volume. Note that due to the high
compliance of the defect with respect to normal stress, the
density of stored elastic energy is sharply increased compared
to that stored in the surrounding intact material. In case of in-
plane compression (see Figure 1b) the situation is different.
Namely, a volume of a material containing a planar defect is
significantly more rigid with respect to in-plane compression
compared to the case of normal stress. The defect strain due
to compression in the in-plane direction is much smaller
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Figure 1. Schematically shown a disc-shape (planar) defect under
the action of applied stress. (a) — normal compression; (b) — in-plane
compression; (¢) — in-plane shear stress; (d) — shear stress in normal
direction.

(of the same order of magnitude as in the intact material).
Therefore, we can neglect the corresponding elastic energy
stored by the defect compared to the amount of the elastic
energy accumulated by the same defect due to its normal
deformation, which is described by equation (2).

To illustrate the above formulated properties one can take
an instructive example of a penny-like cut (crack) whose
deformation under a normal stress is considered, for example,
in reference [22]. According to the results presented in [22],
for such a defect its parameter of compliance ¢ can be written
as:

do 3

Czﬁma (3)

where dy is the opening of the crack, R is its radius, and
< is the Poisson ratio for the matrix material. For exam-
ple, for a very thin micro-crack with an opening of about
a typical atomic size dp = 3 - 10™* yum (which is actually
the minimal physically possible opening) and the crack’s
radius R = 10...30 um, one readily gets the estimate
¢ = (1...3) - 1073 for the matrix material with a typ-
ical value of v = 0.25...0.4. Similar small values of the
compliance parameter are readily obtained for larger (in both
dimensions) cracks in rocks. This estimate also indicates that
for natural cracks with randomly ranged ratios dyp/R it is
reasonable to expect that the corresponding parameters of
compliance widely range from the above estimated small
magnitudes up to the values comparable to the rigidity of the
matrix material. Similar estimates can be obtained [19] for
inter-granular contacts of the Hertz type, or, in other cases
(e.g., for defects at inter-grain boundaries in polycrystalline
solids or complex-shape cracks), the effective parameters of
defect compliance can be introduced phenomenologically.
Following such a way, we can write that when a soft defect
is under the action of a shear stress in the in-plane direction
(see Figure Ic), the corresponding relation of the applied
tangential shear stress o, to the defect deformation X, in
the tangential direction has the form similar to equation (1):

S, . .8
SO’T = GdeT = gGZXT (4)

The notations are also similar to those in equation (1),
Gy = &G, where Gy is the effective shear modulus of the
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defect, G is the shear modulus (the Lame coefficient) of
the matrix material, and is the effective parameter of shear
compliance of the defect. It is reasonable to expect that in
some cases (for example, for inter-granular contacts or large
enough cracks with diameter much greater than the thick-
ness), the shear compliance of the defects can be significantly
reduced (£ < 1). However, for smaller planar defects, prob-
ably only the normal compliance is significantly increased
(¢ < 1), while their shear compliance remains close to that
of the intact material. Then, by analogy with (2), for a de-
fect which is subjected to shear in-plane stress and which is
highly compliant in this direction, the amount of accumulated
elastic energy is given by the expression:

X,
(ry _ _ SLO’?. _ Vla,z.
W, _/SaTdXT_—%G =5 0
0

When a shear stress is applied along the axis transversal to the
defect plane (Figure 1d), the defect shape remains practically
unperturbed and it rather tends to rotate as a whole (like a
piece of intact material), so the amount of own elastic energy
of the defects in such a case can be neglected compared to
the value given by equation (5).

The above mentioned properties and the corresponding pa-
rameters determine the elastic response of the defects to dif-
ferent types of applied stress, which is implied in the model.
It should be added also that the defects are supposed to be
isotropically oriented in the material, so that the material
itself should be considered as average-isotropic within vol-
umes containing large amount of defects. Another important
assumption is that the defects are separated by distances that
are significantly larger than the defect diameter. This con-
dition allows one to consider the stress applied to a defect
as given and makes it possible to neglect the perturbations
caused by other defects. The characteristic spatial scale of
the average stress field (i.e., the length of an elastic wave) is
supposed to be also significantly larger that the inter-defect
distance.

The described model of a microinhomogeneous medium is
evidently applicable to a wide class of initially intact solids
(like rocks or metals) with a small amount of crack-like
defects, however, it cannot be directly applied to the case
of non-consolidated (crumbly) materials similar to sand. Let
us consider first mean elastic properties of a solid material
containing defects-inclusions with the described properties.

3. Elastic properties of the microinhomogeneous
material

In order to characterize linear elastic properties of an
isotropic material it is sufficient to know two of its elastic
parameters, for example, the modulus K of its compressibil-
ity at uniform (hydrostatic) pressure and its Young modulus
corresponding to the case of uniaxial stress [23). These mod-
uli determine the volume density Wy, of elastic energy of
the material under the action of the corresponding type of

stress. In this paper we shall restrict our analysis to the linear
approximation and shall use the energy approach which in
papers {17, 18, 19, 20, 21] was used for the derivation of both.
linear and nonlinear elastic parameters in 1D approximation.
However it is necessary to take into account specifi¢ features
of the 3D case. Namely, at the uniform pressure, when the
stress tensor o = d;,0, the expression for the volume den-
sity of the elastic energy in the material has the following
form:

ol

Wel. = ﬁ—' ) (6)

where K is the modulus of volume compressibility.

At the uniaxial stress, when the components of the stress
LeNsor are 0;; = 0, Ogz = Oyy = 0, oizkr = 0, the energy
density is determined by a similar equation:

a2

ﬁ) (7)

where E is the Young modulus. When the medium is mi-
croinhomogeneous the mean energy density (W) can be
described by similar expressions with some effective moduli
K. and Eo. which are influenced by the occurrence of the
defects:

Wa. =

2 o2
W O W) = g
On the other hand, the mean energy density in a microinho-
mogeneous material can be calculated directly by summation
of amounts of the elastic energy stored at all defects and in the
matrix material per unit volume of the medium. Comparison
of equations (8) with the formulae obtained by such a direct
summation should give the effective values of elastic moduli
expressed via elastic parameters of the matrix material and
the parameters of the defects and their volume content.

To determine the elastic energy stored at the defects it is
necessary to calculate normal and tangential stress compo-
nents o, and o, acting on the defects at the uniform com-
pression and at the uniaxial stress and then to use equations
(2) and (4).

The case of the uniform compression is the simplest. When
the stress tensor o, = §;1,0, the normal stress component is
equal for all defects: o, = o. Therefore, in order to calculate
the mean energy density it is possible to substitute directly
On = 0 in equation (2) for the contribution of the defects
and to use equation (5) for the energy density in the matrix
material. Summation of these contributions yields:

(We) = (8)

1-v)e?2 o2 [
Wa) = C5plZ e 2 [0 )
where v(() is a distribution function of the defects over their
compliance, so that the amount v(¢)d( characterizes the rel-
ative volume content (their volume per unit volume of the
material) of arbitrary oriented defects whose parameter of
the normal compliance belongs to the region [¢,¢ + d¢].
Therefore the value v, = Jv()d¢ corresponds to the to-
tal volume of all defects contained in a unit volume of the



ACUSTICA - acta acustica
Vol. 86 (2000)

Zaitsev, Sas: Properties of microinhomogeneous solids 219

Figure 2. Spatial orientation of a defect.

microinhomogeneous material. Note that exactly in the same
way the distribution v(§) over another (shear) compliance pa-
rameter can be introduced for the volume content of defects
with any spatial orientation (see Figure 2) and any parameter
G- In general case, the defects should be characterized by
their distribution v(1, ¢, ¢, £) over both elastic parameters
¢, &, and the angles 1, ¢, of defect spatial orientation (see
Figure 2). Distribution v(%, ¢, (, £) should be normalized to
the total volume content of all defects v; in the conventional
sense:

vy = 7@/7/10(%%(,5) siny dyp dCd¢, (10)
0 000

so that the distributions v(¢) and v(£) over elastic parameters
¢, &, correspond to:

27 1l
v(¢) = / dy / /v(w,w,c,ﬁ) singdpde, (1)
0 00

v(€) = 7d<p

It is important that the distributions over elastic parameters
and the distribution v{1), ) over spatial orientations are es-
sentially independent, so it is possible to perform averaging
over defect orientations independently for defects with dif-
ferent elastic parameters. In case of isotropic orientations, the
uniform angular distribution v(v, ¢) should be normalized
as:

w1

v(¥h,0,¢,€)sinydyd(.  (12)
5 ‘

0

oW 0) = - (13)

in order to be consistent with equations (10) through (12).
Note that parameter £ of the shear compliance was not sig-
nificant for the case of the uniform compression, but it could
be important in the case of the uniaxial stress, when the com-
ponents of the stress tensor are 0,, = 7, 05, = Oyy = 0,
0;#x = 0. In this case, both the stress component normal to
the defect plane and the tangential stress component should

be taken into account, their values being dependent on the ori-
entation of the defect. Therefore, in the notations introduced
in Figure 2, the normal and the tangential stress components
are given by the equations

on = ocos? 9, (14)
0r = 0CosYsin. (15)
These values have to be substituted in equations (2) and
(4) for the elastic energies of the defects. The summation of
shares of defects with isotropic orientations to the total elastic

energy of the material, therefore, corresponds to averaging
the values o2 and 62 over the uniform angular distribution:

2r

(62) = / dy / o2 (b, ©)(tp, ) sin 1 dy

0 0
27T s
= & [ [Rw.smvay, o)
0

0

27 T
02 = [ do [ o2,0p(w,0)sinway
o - 0

27 n
1
=5 [ @ [Fwosmpw,
0 0

where 02 (1, o) and 0% (1), ) are given by expressions (14),
(15) in the considered case.

Taking into account relations (14) through (17), the sum-
mation for defects with isotropic orientations gives the fol-
lowing equation for the mean elastic energy at uniaxial stress;

o) = U502 1(20 [0

+ 12—5(%) /”(é—f)dg. (18)

Comparison of equations (8) with equation (9) for the uni-
form compression, and with equation (18) for the uniaxial
stress, readily yields for the effective moduli:

Kegg. = K[(l —v) + %/E(ZQdC]—l, (19)

B = Bl-w)+ 1 [
2E [v(®) 17"
G ng] . (20)

Expressions (19), (20) are direct generalizations of similar
equations for the effective elastic modulus obtained earlier
[17,18, 19]for 1D medium models. However, now additional
effects of shear deformation of the defects and the distribution
of the defects over all orientations within the spatial angle
are taken into account.

Below we shall neglect the term v; in equations (9), (18)
and in their consequencies (19) and (20) because the inequal-
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w= [uoa< ["a

w= v« [

are valid for highly compliant defects with compliance pa-
rameters (,£ < 1, and the defect concentration is rather
small v; < 1 (as we supposed that the distance between the
defects is much greater than their size).

Further, it is possible to apply conventional relationships
[23] between the elastic moduli and the Poisson ratio for
an isotropic medium. Then equations (19) and (20) readily
yield the following expressions for the effective value of the
Poisson ratio Yeg. and for the relative change (for example,
E = E./E, etc.) of the elastic moduli:

=N+ E1+N

, 21
T T IN + A1+ )N (1)
7 Eeff. 1
E= = , 22
E 1+ EiN1+ A (1+9)N, (22)
~ Gesr. 1
G = = : , 23
1+ ZN1/(1+7) + 2N, (23)
2
A = Mt _ [1+ 151 EN2(1+’Y)]
M 1—-v (1-7)
N, 2 N, 1
15 14 -3 . (24
[1+1+7+5N2] [+1——2'y] (24)

Here 1y is the Poisson ratio for the matrix material, and nota-
tions M and Mg are introduced for the moduli correspond-
ing to the longitudinal bulk wave in the medium without de-
fects (the matrix material) and in the microinhomogeneous
medium, respectively.

Parameters N7 and NV, in expressions (21) through (24)
have the following meaning:

Ny = / d¢, No / v 4 (25)

In case of identical defects with fixed values of compliance
parameters ¢ and &, the distributions have the form of delta-
functions, so that:

Ut

c N, ¢ (26)
Physically, as it is clear from equations (25), (26), parame-
ters Ny and N, are determined jointly by the compliance
of the defects and their concentration. Further, as it was
argued above, it is natural to assume that real defects are
characterized by a wide distribution over their parameters of
compliance, and it is convenient to approximate the distri-
butions by wide II-shape functions (by analogy with papers
[19, 20, 21]):

Ny =

(1)
v(() = {Uo , when( € [a1,b1], a1 < b1 < 1, @27)

07 when C ¢ [a‘la b1]7

Vol. 86 (2000)
and
(2)
—J v, whenf € [az, by, as € by K 1,
v(®) { 0, when ¢ & [az, bo). (28)
Therefore,
1
"= / u(¢Q)d¢ = (b — ar)vf” ~ byofY, (292)
0
and

1
v = / v(€)dE = (by — ag)v((, R~ bzv(z) (29b)
0
Parameters N1 and IV, then have the following forms:

ppli/a) o n(ba/az)

N, =
! by by

(30)
It can be noted that parameter N> may be either smaller
(for rigid in shear direction defects) or comparable, or even
higher than ;. Therefore, depending on the relation of
parameters N7 and N, the effective Poisson ratio in the
medium with soft defects can be either greater or smaller than
in the homogeneous matrix material (according to equation
(21), the total range for s, is determined by the inequal-
ity —=1/3 < 7eg. < 1/2). It is interesting to note, that the
Poisson ratio . can even become negative at

Ny > 15y +2(1 + ) Na,

which (according to equations 25-30) can be reached at yet
small total concentration v; < 1 of highly compliant de-
fects. Unlike the Poisson ratio (which can either decrease
or increase) the elastic moduli in a medium with soft in-
clusions will always decrease according to equations (22)
through (24). However, the relative rate of the decrease of
different moduli depends essentially on the properties of the
defects via the relation of parameters N; and N,. For dif-
ferent values of ratio N1 /N5, the decrease in values of the
shear, longitudinal or the Young moduli can be significantly
different. We consider in details the corresponding examples
in the following sections.

4. Absorption in the microinhomogeneous medium

In order to calculate absorption of the elastic waves we ap-
ply an energy-balance approach in the form similar to the
one used in paper [20]. It is convenient to derive the non-
dimensional decrement @ which is related to the wave ab-
sorption coefficient a as § = aX = aC/ f, where ) is the
wavelength of an elastic wave, f is its frequency, and C is
its velocity. The same decrement can be also expressed via
the ratio

Wais.

g =
2Wel.’

(31)

where Wyis. means the wave energy losses in a unit vol-
ume during one period of a harmonic wave, and Wy_ is the
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maximal value of density of the elastic energy of the wave
motion.

In equation (31), the density of the elastic energy is given
by expressions (8) for the bulk longitudinal wave and for the
rod (Young) wave, and by the similar equation for the shear
wave with the effective shear modulus Geg. instead of the
effective moduli Kes, and Eeg, in equations (8).

In order to calculate the losses Wy, it is necessary to
take into account that the defects are characterized not only
by their elastic coefficients, but also by effective viscosity
corresponding to the dissipation of the elastic energy at the
defects. Physically, this dissipation can be attributed, for ex-
ample, to thermal losses caused by increased temperature
gradients [23] and increased material compression in the
vicinity of the defects either at compressional or at shear
defect deformation [24]. In both cases there should occur
material compression due to complex distribution of stress
in the nearest vicinity of a defect. The losses due to both types
of defect deformation (compressional or shear) contribute to
the total value of the decrement and can be estimated inde-
pendently.

4.1. Absorption due to compressional deformation of the
defects

Let us first consider the losses caused by normal compression
of the soft defects. Introducing coefficient g, for the effective
viscosity of the defects into their equation of state under
normal compression we obtain a generalization of equation
@)

S = (B Xt K, (32
where d X, /dt = Xn. The mean power of the elastic en-
ergy dissipation is proportional to the period-averaged value
(91X2) ~ w?g:1| X, |2, where w = 2 f is the wave angular
frequency and the amplitude |X,,| is related to the normal
component ¢, of the elastic stress via equation (32).

The normal component of stress, in its turn, depends on
the defect orientaion and on the type of applied stress. In
case of the uniaxial stress (longitudinal rod wave) it is de-
termined by expression (14), o, = oT1 (¢, ) = o cos? 1.
In case of a longitudinal wave or for a transversal wave, the
angular coefficient T} (1, ¢) can be found in a similar man-
ner considering the normal projections of the corresponding
stresses. Further, performing the averaging of o2 accord-
ing to equation (16), which corresponds to the summation
of the dissipation at all defects with different spatial orien-
tations (but identical compliance parameter (), one obtains
the following expression for the “compressional” decrement

81 (w, ¢):

Deff.

. (72, ) el

¢+ (w/h)*

8w, ¢) = mv(¢) (33)

In equation (33), coefficient Degr. corresponds to the effective
value of a particular elastic modulus (for example, Mg, for
the bulk longitudinal or Gegr. for the transversal wave) for

which expressions (22) through (24) were derived in the
previous section. The characteristic relaxation frequency §);
introduced in equation (33) depends on the effective viscosity
of the defects:

_ES

Ql—gl—L.

(34)

The angular coefficient (T2 (¢, 1)) is determined by the av-
eraging the squared normal stress component (for the corre-
sponding type of the stress field) over spatial orientaions of
the defects. The averaging procedure is similar to the one in
the previous section and gives:

(THe.w) = (35)

r_1_+ 2%es. i ) 7e2ff‘
5 15(1—er.) 1515(1 — veq.)?

for the bulk longitudinal wave,

4
1
5 for the rod (Young) wave,
1
—  for the transversal wave.
\ 15

The value of the Poisson ratio yeg. of the microinhomoge-
neous material is determined by equation (21).

Further, we should take into account the distribution v(¢)
of the defects over their compliance and make the corre-
sponding summation by analogy with the consideration of
the elastic moduli in the previous section. It is reasonable
again to use the II-shape distribution function (27). Then the
summation (integration of equation (33) over d(¢) yields:

b1

6w = nv(()l) D—E£<T12(g0, 1/))>arctan( (36)

)
w / Ql a1
Concerning the frequency behaviour of the decrement, the
most intersting consequence which follows from this equa-
tion is that in a wide frequency band

alﬂl <w< blﬂl, (37)

the difference arctan(b;Q/w) — arctan(a; 0 /w) =~
const. = /2, and, therefore, decrement §(*)(w) is prac-
tically independent of the frequency w of the wave, and,
moreover, the decrement value in this frequency band does
not depend on the effective viscosity of the defects. Actually
this means that the implicit assumption of equal effective vis-
cosity of the defects (or rather the assumption of a constant
value of the relaxation frequency Q;) was not necessary for
the validity of the above-formulated conclusion. This result
was discussed in more details in papers [20, 21] in which
the model of the microinhomogeneous medium was one-
dimensional.

Therefore, in the wide frequency band a:0; < w <
b1, the decrement 61 (w) is approximately constant
6D (w) = 68 =const.), and equation (36) provides a
reasonable estimate for the absorption magnitude using only
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the parameters of the elastic properties of the defects and
their volume content:

7'(2 D . .
o = T 2t (1200,

2
T (T ,)). (38)

In terms of the above introduced parameter /Ny and the nor-
malized non-dimensional moduli D = Deg /D, it is possi-
ble to rewrite expression (38) also in the following unified
form:

P4

o = Tu b2 (12, w)>
~ 71'2 Nl = D

Thus via expressions (21) through (24), the decrement value
is related to the effective normalized moduli Deg. and to the
Poisson parameters ves and <y of the microinhomogeneous
medium and of the matrix material.

4.2. Absorption due to shear deformation of the defects

Let us turn to the consideration of the absorption of the con-
sidered types of the elastic waves caused by shear deforma-
tion of the soft defects. We denote the corresponding decre-
ments as ) (w) by analogy with contribution 61) () due to
the compressional deformation of the defects. It is clear from
the analysis in the previous section, that the maximal value
of the decrement 0(1)(w) in the frequency band (37) does
not depend on the effective viscosity itself, and, according to
expressions (38) and (39), it is essentially determined by the
geometrical and elastic parameters of the defects. Therefore,
even if the parameters of the effective defect viscosity at nor-
mal compression and at shear deformation are significantly
different, the maximal values of the corresponding shares
68 and 82 to the total decrement 6(w) can be compara-
ble in magnitude. However, the corresponding characteristic
frequency bands [a1 24, 5,Q4] for 1 (w) and a2z, b2(2]
for 0( (w) can be either overlapped or essentially separated
in the frequency domain. Therefore, for a wave with a given
frequency, these mechanisms may act either simultancously
or essentially separately, depending on the defects properties.

In case of shear deformation of the defects, effective pa-
rameter go of the “shear” viscosity can be introduced by
analogy with equation (32):

dx, .8 .
=Gtk (40)

Then losses due to effective viscosity at shear deformation
can be estimated in the same manner as for the case of com-
pression. The main distinction is that in this case it is neces-
sary to take into account not normal, but tangential projection
o, of the elastic stress. Doing so, one obtains the expression
for the share of the defects with all orientations, but fixed
parameter £ of shear compliance:

SO'-,- = Gds

0P,) = (O (T2 0 8) sy (41)

By analogy with equation (33), in equation (41), coefficient
Deg. corresponds to the effective value of a particular elastic
modulus (Fesr., Megr, or Geg.) for the corresponding wave
type (the rod longitudinal wave, the bulk longitudinal wave or
the shear wave). The characteristic frequency (2, in equation
(41) depends on the effective viscosity of the defects at shear
deformation:
GS

Qs 5L (42)
Angular coefficient (T3 (p, 1)) for the tangential projection
is determined by the averaging (over the spatial orientaions
of the defects) the squared tangential stress component 0’3
for the corresponding type of the wave field. The averaging
procedure which is similar to the one in the previous sections
gives:

(THe,0)) = (43)
E=)

for the bulk longitudinal wave,

<
5 for the rod (Young) wave,
4
—  for the transversal wave.
\ 15

Summation of the shares of all defects with different shear
compliance & over the distribution (29) then yields the fol-
lowing expression for the “shear” decrement 6(2) (w):

b

DG <T22(cp,1,b)>arctan(w/£nz) .(44)

In the frequency band ax€s < w < b2, by analogy with

equation (38), again the decrement is approx1mately constant
and close to its maximal value:

o D (1200, 0))

})’—g—(Tg(so,w)). (45)

(W) = TF’U(()z)

68 =

~

2
T

2
In terms of parameter N, and the normalized moduli D =

Deg./D by analogy with equation (39) it can be rewritten
as:

0 = ZoP D2 (T3, w)

72 N ~
S S e <T2(‘P’ ) CT

All the qualitative features mentioned in the discussion of
the decrement 8(Y) (w) are valid for §(1) (w) as well. Total
decrement 6(w) is determined by the sum of the both shares:

8(w) = 6W(w) + §(w). (47)

Expressions (39), (46) for the decrements 8(1) and (2
contain effective defect densities NV 1,2 as well as the relative
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widths by 2/a; 2 of the defect distributions over their elastic
parameters. However, this ratio is under the logarithmic func-
tion, and, therefore, even quite a large uncertainty within an
order of magnitude in the estimate of the ratio, for example,
b1,2/a1,2 = 10%...10* gives only an uncertainty of 20% in
the calculation of the decrements.

Note further, that parameters [N, and N, in expressions
(39), (46) for the decrements can be estimated from experi-
mental data on variation AD /D of the elastic moduli using
equations (22) through (24). The latter expressions were de-
rived in the quasi-static limit that corresponds to frequencies
w K a1 20 2 for which the viscous terms in equations (32),
(40) can be neglected. For higher frequencies, however, the
microstructure-induced perturbations AD/D of the elastic
moduli are frequency dependent due to the influence of the
defects viscosity. This dependence (which can be derived,
for example, using the Kramers-Kronig relations and the ex-
pression for the decrement) was considered in paper [21] in
the 1D approximation. The results obtained there are also
approximately applicable to the discussed 3D case. It was
shown that inside the band a2 < w < bS} (here we omit in-
dexes 1, 2), the microstructure-induced perturbation AD /D
of the elastic modulus is characterized by a logarithmic dis-
persion:

AD() _ ,ACw) b2 + (w/Q)?

D 8, o + (W/Q)2

where C(w) = +/D(w)/p is the wave velocity, and p is
the medium density. Within frequency band af} < w < bQ2,
where the decrement 8 (or the corresponding quality factor
Q) = 7/8) is approximately constant () = 7/, =const.),
equations (27), (38) and (28), (46) allow to re-write disper-
sion relation (48) in the following form:

c (w1 ) ~ 1 w1

C(w2)~1+7ranw2' (49)
Note that numerous experimental data give exactly this log-
arithmic form of the approximation for the frequency de-
pendence of wave velocity in solids with the almost con-
stant quality factor [25, 26]. This agreement with the known
experimental data on the dispersion provides an additional
argument that the considered model gives realistic predic-
tions of the wave properties. In this paper, however, we are
focused not on the dispersion, but on the evaluation of the
microstructure-induced absorption and on the complemen-
tary decrease of the elastic moduli. Therefore, in the examples
considered below we neglect the dispersional correction and
compare the values of the decrements with the correspond-
ing variations (22), (23), (24) of the elastic moduli which
are found in the quasistatic (low-frequency) approximation.
Such a comparison provides quite a reasonable evaluation
for the almost constant decrement in the frequency band
afl < w < bS). Indeed, in this frequency band, one can use
the quasi-static estimate In(b/a) for the logarithm in equa-
tion (48) with an uncertainty of a factor about two. However,
if necessary, the dispersion correction in the form (48) can
be applied to the quasi-static equations (22) through (24) for
the variations of the elastic moduli.

v In

(48)

5. Discussion

The analysis performed in the previous sections shows that
the presence of soft micro- defects in an intact solid results.
in increase of the absorption and in simultaneous reduction
of the effective moduli of the microinhomogeneous material.
The relative decrease of the different elastic moduli depends
on the ratio of the parameters N; and N, which, in turn,
depend on the elastic properties of the defects and on the
defect volume content via expressions (25), (29), (30). It
was shown also that the Poisson ratio can either decrease or
increase depending on the compliance of the planar defects
with respect to normal or shear applied stress.

It is reasonable to distinguish the following characteristic
cases: N;/N2 > 1, N1 /Ny ~ 1, and N; /Ny < 1. When
relation N1 /N2 >> 1, the defects are highly compliant only
with respect to a normal stress. When both the normal and the
shear compliances are comparable, the ratio is Ny /Na ~ 1.
Finally, when the shear compliance is higher, the following
inequality is valid: N7 /Ny < 1.

The corresponding examples of calculation of the decrease
of the elastic moduli, the variation of the Poisson ratio and
the corresponding maximal values of decrements 09) and
0&2) are plotted in Figures 3 and 4 against parameter Ny
proportional to the defect content. Figure 3 corresponds to the
“compressional” decrement 09) , and in Figure 4, the “shear”
decrement 95;2) is shown. These examples demonstrate that
when N7 /Ny > 1, the decrease is the highest for the elastic
modulus for the bulk longitudinal wave (see Figures 3a and
4a). The Poisson ratio in this case pronouncedly decreases
with increase of the defect content. When N; /N, ~ 1, all
elastic moduli decrease approximately with the same rate (see
Figures 3b and 4b), and, correspondingly, the Poisson ratio
remains almost unperturbed. Finally, when N1 /N, < 1, the
decrease of the modulus for the bulk longitudinal wave is
the smallest (Figures 3¢ and 4c), whereas the Poisson ratio
pronouncedly increases.

Concerning the absorption, comparison of Figures 3 and
4 shows that the compressional and the shear deformation
of the defects cause different relative dissipation magnitudes
for different types of waves. Namely, “compressional” decre-
ment 0&1) is the largest for the bulk longitudinal wave and is
the smallest for the transversal wave (see Figure 3), whereas
“shear” decrement 022) instead can be significantly larger for
the transversal wave compared to those for the bulk longitudi-
nal wave (see Figures 4a and 4b). Note, that such essentially
different cases were really observed for seismic waves. Ex-
periments indicate, for example, that in different kinds of
rocks the decrement for the longitudinal wave can be either
greater or smaller than for the transversal wave [3].

Figures 3 and 4 give also an impression on the magni-
tude of the change in elastic moduli D = D(N;) and on
the corresponding magnitude of the decrements, 0£1)(N1)
and 9&2)(N1) for the plane longitudinal, the Young (rod)
wave and the transversal wave. The figures show that de-
crease in the velocity of the longitudinal wave by 10...25%
(compared to the intact matrix material) corresponds, for ex-
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Figure 3. Examples of calculated dependencies of the “compres-
sional” decrement, the Poisson ratio and the variation of the elastic
moduli on parameter IV1. The middle thick line in the plots is the
Poisson ratio. Upper thin curves are for the normalized elastic moduli
D = D/Deg.; the lower curves are for the corresponding decre-

ments, 100£1); the solid thin lines ( ) being for the longitudinal
wave; the dashed lines (- — -), for the Young (rod) wave, and the dot-
ted lines (-----), for the transversal wave. Poisson’s ratio for the matrix
material v = 0.3; ratio of parameters b1 /a1 = bz /a2 = 3 - 103,
parameters by,2 = 3 - 10°. (a) — ratio N1/Ny = 10, (b) - ratio
N1/N> =1, (¢) - ratio N1 /N, = 0.1.

ample, to the decrement 85 (N;) ~ (3....8) - 10~2, which
is unusually high for homogeneous media (like amorphous
defect-free glass or single crystals), but instead is typical for
such microinhomogeneous solids as rocks [3, 24, 25, 26, 27].
For the comparison with the model, it is important to stress
that numerous experimental data on attenuation in rocks in-
dicate that the decrement typically is almost constant in a
wide frequency band [3, 25, 26, 27, 28], which agree well
with the obtained results on the frequency behaviour of the
decrements (see equations (36), (44) and their discussions).
Besides rocks, similar increased absorption and the almost
constant quality factor is also typical for many polycrystalline
metals whose properties are also essentially determined by
microstructural inter-grain defects [28].

Note further, that the model not only predicts the exis-
tence of the relatively wide frequency bands [a; €, by 0]

Figure 4. Examples of calculated dependencies of the “shear” decre-
ment, the Poisson ratio and the variation of the elastic moduli
on parameter V1. The middle thick line in the plots is the Pois-
son ratio. Upper thin curves are for the normalized elastic moduli
D = D/Deg ; the lower curves are for the corresponding decre-

ments, 100£2) ; the solid thin lines ( ) being for the longitudinal
wave; the dashed lines (——-), for the Young (rod) wave, and the dot-
tedlines (----), for the transversal wave. Poisson’s ratio for the matrix
material v = 0.3; ratio of parameters b1 /a1 = by/as = 3 - 10%,
parameters b1 » = 3 - 10%. (a) - ratio Ni/N2 = 10, (b) - ratio
N1/N2 =1, (c) - ratio Nl/Nz =0.1.

and [a2Q9, b2€2;] in which partial decrements 6‘$1)(w) and
6 (w) are almost constant, but provides a more detailed
description. It was already mentioned that, in the general
case, the respective position of the characteristic bands
(@191, b11] and [a2€22, b205] can be arbitrary: they may
either overlap or be essentially separated in the frequency
domain. Therefore, the dependence on frequency of the re-
sultant decrement 6(w) = 9&1)(w) +6 (w) in these cases
can be more complex and significantly different (either de-
crease or increase) at different frequency ranges and for dif-
ferent types of waves. Examples plotted in Figure 5 demon-
strate qualitatively the frequency behavior of the partial and
the total decrements for the longitudinal and the transversal
waves in case when, for example, the interval [a; ()5, bads] is
lower in frequency than interval [a; 2, b;Q 1]. Namely, the
following parameters are chosen: b; /a; = ba/as = 3105,
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o Figure 6. An example of the frequency behavior for the decrement
8(w) = 6 (w) + 8 (w), (lines marked by 1), and for the ab-
sorption coefficient a(w) o wé(w), (lines marked by 2). The solid
curves are for longitudinal and the dotted curves are for transversal
waves. The relation N = N /10, initial Poisson’s ratio P = 0.3;
. Bl parameter N1 = 0.3; ratio of parameters by /a1 = by/ay = 3-10%;
@ ratio £2; /S22 = 300.
B 1E2 4
:g
. v
o B33 case of essentially different frequency dependencies for the
g absorption coefficients for the longitudinal and the transver-
184 A i sal waves. Namely, in the wide frequency band (from —2
) loglw/€,) to 0 in the non-dimensional logarithmic scale) the absorp-
tion coefficient for the longitudinal waves increases almost

Figure 5. Examples of frequency behavior of absorption. The thin
solid curves are for (“compressional” decrement 9(1) (w), the dashed
curves are for “shear” decrement 6% (w), and the thick curves are for

the resultant decrement (w) = 6 (w) 46 (w). Number 1 is for
the longitudinal wave, number 2 is for the transversal wave. Poisson’s
ratio for the matrix material v = 0.3; parameter N; = 0.3, ratio
bi2/a1,2 =3-10% by5 = 0.03, ratio Q1 /Qy = 10%. (a) - ratio
N1/N2 =10, (b) ~ratio N /N2 =1, (¢) —ratio N1/N2 =0.1.

1/ = 103, and the effective density N; = 0.3 (the cor-
responding values of the elastic moduli can be readily found
by comparison with Figures 3, 4). Corresponding values of
ratio N1 /N, are indicated in the figure caption. Figure 5
demonstrates that the ratio of the microstructure-induced
decrements for the transversal and the longitudinal waves
can either increase or decrease with frequency or can remain
almost constant depending on the parameters of the microin-
homogeneous material.

Another example plotted in Figure 6 shows qualitatively
the frequency behaviors of the full decrements 8(w) =
0‘(31)((41) + 0£2)(w) and the corresponding absorption co-
efficients a(w) = wh(w)/(2rC) for the longitudinal and
transversal waves when interval [a2Q2, b2()5] for the “shear”
absorption mechanism is positioned lower than interval
[@1821, 6194 ] for the “compressional” mechanism. The log-
arithmic scale is equal for both axes to show directly the
power exponents of the dependencies via the slope of the
corresponding curves. Figure 6 demonstrates an interesting

linearly with frequency (solid curve 2), whereas the depen-
dence for the absorption coefficient of the transversal wave is
pronouncedly slower (dotted curve 2). The slope of the latter
curve changes from approximately 0.5 to 1 in the considered
frequency range. This example demonstrates that the same
structural mechanism of absorption can cause significantly
different frequency dependencies for attenuation of different
types of waves.

Note that along with rocks and some polycrystalline met-
als, the above obtained results probably can be also rele-
vant to nano-crystalline metals, for which the absorption
coefficient is anomalously high in magnitude and is ap-
proximately linearly proportional to ultrasound frequency,
whereas the sound velocities (elastic modules) are signifi-
cantly (by 10...20%) lower compared to the same metals
in the “normal” polycrystalline state [16]. The latter fact in-
dicates clearly that there is a significant amount of highly
compliant microinhomogeneities in the material structure,
which is the basic property of the considered model. It can
be stated that qualitatively, the measured functional depen-
dencies in experiments [16] correspond fairly well to the
obtained above results. In particular, almost constant qual-
ity factor was also observed in the nanocrystalline materials
and even an example of different frequency dependencies for
the longitudinal and for the transversal waves was reported
in [16] for the same frequency range (see the discussion of
Figure 6 above). Moreover, even quantitative estimates of
the absorption based on the experimental data on the de-
creased elastic moduli and on the derived equations (39),
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(46) for the decrements give the magnitudes of the decre-
ment 6, ~ (3...9) - 1072 which are close to the reported
experimental data. On the other hand, according to the esti-
mations performed in [16], this strong attenuation exhibited
by the nanocrystalline samples could not be attributed to
presently known mechanisms alone.

Concerning the comparison of the results of this paper
with existing models, it can be pointed out that the ob-
tained dependencies are in a good agreement with known
phenomenological approximations describing experimental
results on elastic waves velocities and attenuation in many
microinhomogeneous solids. In particular, a rather compre-
hensive phenomenological model describing velocities and
attenuation of seismic waves was developed by Gurevich
[29] on the basis of thorough systematization of numerous
experimental data (the summary of the main results originally
published in [29] can be more easily found in review [3]).
The central point of this model was the hypothesis that the
approximately constant quality factor of rocks and the loga-
rithmic dispersion could be attributed to a wide spectrum of
classical exponential-type relaxation processes whose spec-
tral density is proportional to the characteristic relaxation
frequency. Later on, other authors also considered similar
relaxation-band models [30, 31] which allowed for fairly
well fitting the known variety of experimental data on seis-
mic wave absorption and dispersion [25, 26]. However, the
physical meaning of these phenomenologically introduced
relaxation processes and the connection of the parameters
of these models to the medium microstructure remained un-
known [3, 26]. In principle, the almost-constant decrement
could be phenomenologically approximated by alternative
ways, for example, using the only one relaxation process
with a non-exponential kernel of the formt™™,0 < m < 1
(e.g., [26, 32] and analogous recent works [33, 34]). How-
ever, the question about a plausible physical interpretation
of these phenomenological kernels also remains to be open
[26, 33, 34]. In this context, the model derived in the present
paper can be considered as a physical argument in favor of
the exponential relaxation-band hypotheses [29, 30, 31], as
the above performed consideration provides physical insight
in the nature of these hypothetical relaxation processes and
directly relates them with microstructural features of mi-
croinhomogeneous solids.

Concerning other non-phenomenological models it can be
noted that they mostly considered separately either the elastic
properties of microinhomogeneous solids ([1, 2] and similar
later models, e.g., [35, 36, 37]) or the attenuation caused by
nonlinear (e.g., frictional) mechanisms [28, 38, 39, 40], as
it seemed impossible to obtain the almost constant quality
factor in models based on conventional linear viscous-like
losses. It may be shown that the mentioned mutually consis-
tent results [1, 2, 35, 36, 37] obtained for elastic properties of
solids with cracks and based on particular models of cracks
are also consistent with the above obtained inferences on the
material elastic properties. By appropriately re-formulating
key parameters [V and N in terms of notations used in those
works the above derived equations (19) through (24) may be
reduced to concrete cases considered in [1, 2, 35, 36, 37].

For example, expressions for the elastic moduli obtained in
works [35, 36] in case of dry elliptical cracks correspond
to equations (19) through (24) when the crack’s density (in
the notations of [35, 36]) is equal to (3/16)N;/(1 — 4?),
whereas the ratio N1 /N2 = (1 + v)(2 — ¥2). The latter
ratio characterizes relative importance of the defect compli-
ance in the normal and tangential directions, and the value
N1 /N3 = (1+7)(2—~2) is specific of the particular model
of dry elliptical cracks, which was used in [1, 2, 35, 36].

Therefore, in terms of the analysis performed above,
the dry elliptical cracks are evidently close to the case
Ny /N3 = 1 (see the corresponding plots for the elastic mod-
uli and the decrements in Figures 3b, 4b and 5b). However,
as it is pointed in [37], almost no cracks in situ are ellipsoidal
cavities, and other models of cracks may exhibit noticeably
different elastic properties. Consequently, ratio N; /N, may
be noticeably different for different types of cracks. The infiu-
ence of such variations of the normal and tangential compli-
ance of the defects can be readily analyzed in the framework
of the suggested approach (in fact, the results of such analysis
are presented in the examples of plots corresponding to dif-
ferent values of N1 /N, in Figures 3 through 5). Further, as it
was argued in papers [35, 36], presence of a fluid in a crack
may significantly affect its elastic properties, namely, the nor-
mal stiffness of the crack may significantly increase, whereas
in the tangential direction the crack remains highly compli-
ant. Such fluid-saturated defects which are highly compliant
only in the tangential direction, in terms of parameters N;
and N5, correspond to the case Ny /Ny < 1. Therefore, the
above obtained results on material elasticity and dissipation
in case of N;/Ny <« 1 may be interpreted as being per-
tinent to fluid-saturated cracked solids. Such a comparison
indicates that, in combination with particular models of de-
fects (like those used in [1, 2, 35, 36, 37]), the suggested
approach may be developed to effectively account for the
cases of either dry or partially and completely fluid-saturated
microinhomogeneous solids.

Another important example of a self-consistent micro-
mechanical description of both the elasticity and the attenu-
ation is the wide group of models of porous media based on
Biot’s ideas [26, 41, 42]. However, in these models the wave
absorption was attributed only to the interaction of the solid
matrix with flows of a porous gas or a liquid, and dissipa-
tion associated with the mineral frame was not included in
the micromechanical consideration. The Biot model does not
give the almost constant decrement ‘and predicts the attenua-
tion coefficient that depends on frequency £, scaling as f2 at
low frequencies and as 1/ f above some threshold frequency,
which has a limited application to real rocks [28).

Concerning the losses in the solid skeleton, it is essential
to note that experimental data on attenuation in dry porous
rocks indicate that the observed differences should be pre-
dominantly connected with some fine microstructural fea-
tures of the solid skeleton, rather than with the macroscopic
properties such as density or porosity [28, 43]. The model of
Biot [37, 38] and its modifications [26, 28] cannot account for
this fact as they do not consider own attenuation in the solid
matrix. On the other hand, this experimentally established



ACUSTICA - acta acustica
Vol. 86 (2000)

Zaitsev, Sas: Properties of microinhomogeneous solids 227

weak dependence on the macroscopic porosity appears to be
in a good agreement with the model suggested here. To illus-
trate this, one can make an estimate using, for example, the
material parameters accepted for the calculations presented
in Figure 3a. Then it follows from expression (38) that the
typical for rocks decrement 6 = 6 - 10~2 (or in terms of the
quality factor @ = 7/6 = 50) corresponds to the total spe-
cific volume content of the soft microcracks v = 2 - 1073,
Such a small volume of the microcracks practically does not
influence neither average porosity, nor density, but it is quite
enough to explain typical experimental data on attenuation.
On the other hand, it is clear that near- spherical (cylindrical)
pores with much greater volume could significantly change
porosity and density. However, in absence of the fluid satura-
tion they practically do not influence the absorption because
the cylindrical and spheroidal cavities in a solid matrix are
not soft inclusions unlike the thin cracks and similar defects.

Summarizing the discussion it can be stated that the pro-
posed micromechanical model for absorption and elastic-
ity of microinhomogeneous solids is in a good agreement
with the main features of elastic wave attenuation/dispersion
which are experimentally observed in various microinhomo-
geneous solids. The obtained functional dependencies also
agree well with the best known phenomenological approxi-
mations and satisfy the causality principle (Kramers-Kronig
relations) unlike some phenomenological models [3, 25, 26],
because the discussed results are self- consistently derived
from a few basic and intuitively clear physical assumptions
about the medium microstructure. Moreover, quantitatively
the model also yields rather verisimilar estimates for the ab-
solute values of absorption and dispersion. For more detailed
comparison it would be helpful to have available more com-
prehensive experimental data on the complementary values
of attenuations and wave speeds for different types of waves
(the shear, bulk longitudinal and Young’s modes) in a wide
frequency band and at different densities of the microstruc-
tural defects (the density of the defects can be changed, for
example, by applying a static stress or changing the material
temperature).

6. Conclusions

The suggested model of a microinhomogeneous solid al-
lowed for calculation of elastic and dissipative properties of
an elastic material containing isotropically oriented highly
compliant planar defects. It is shown that by comparison
of the initial moduli of an intact matrix material and their
values in the microinhomogeneous material it is possible to
predict the magnitudes of the near-constant decrements for
the corresponding waves without knowing details of dissipa-
tive properties of the defects. The model implies a few basic
parameters describing the medium microstructure, which al-
lows for obtaining further physical predictions. In this paper,
the basic parameters of the microscopic defects were intro-
duced semi-phenomenologically using reasonable physical
arguments and taking into account available experimental

data. Altegrnatively, they can be obtained from physical mod-
els of microinhomogeneities (for example, from models of
crack-like defects [24]) and incorporated into the model of
the microinhomogeneous medium to predict its properties
“from the first principles”.

The model has proven to be in a good functional agreement
with main acoustical properties experimentally observed in
many microinhomogeneous solids (for example, the lin-
ear dependence of the absorption coefficient on frequency)
which had no satisfactory physical explanations and were
described mostly phenomenologically [3, 25, 26]. Other di-
rections of the development the suggested 3D model are quite
evident by analogy with its 1D variants [17, 18, 19, 21, 23]
(self-consistently implying dissipation, dispersion, and non-
linearity) and can be considered elsewhere.
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