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Summary

. A nonlinear, non-hysteretical and non-frictional mechanism of amplitude-dependent losses typical of micro-

inhomogeneous media is proposed. This mechanism requires neither qausistatic hysteresis at the defects, nor friction-
type losses such as slip at the defect’s interface or another nonlinear viscosity. It is shown that inherent amplitude-
dependent macroscopic attenuation in microinhomogeneous solids also occurs due to combined action of two factors,
(i) purely linear (viscous-like or thermal) losses at the defects and (ii) elastic nonlinearity which is typical of such defects
as cracks, intergrain contacts, etc. In particular, the defect nonlinearity of a hysteretical type also influences the resultant
macroscopic amplititude-dependent attenuation via this mechanism. However, this contribution of the hysteretic non-
linearity is not related to the non-zero square of the hysteresis “stress-strain® loop, and is not associated with convential
hysteretical losses, Therefore, in a hysteretical material, these essentially different mechanisms may exhibit themselves
either simultaneously or separately depending on the particular type of the nonlinear effect. For example, the role of
both conventional hysteretical and the mentioned non-hysteretical nonlinear losses is comparable in case of self-action
of a tonal wave, but the non-hysteretical mechanism may dominate in the special case of interaction of two different
waves. The case of a solid containing isotropically oriented highly compliant microinhomogeneities is analysed as
an important instructive example. Complementary nonlinearity-produced variations in the elastic moduli and in the
decrements are evaluated for the longitudinal, the Young (rod) and the transversal elastic waves. Inter-relationships

of the microstructure of a solid, its elastic and dissipative properties are pointed out and the relevance of the model

implications to published and own experimental observations is discussed. The obtained results allow for prediction of
the amplitude-dependent absorption and of the complementary change in elastic parameters for microinhomogeneous

" materials without detailed knowing viscoelastic properties of the defects. The model is applicable to a wide class of

materials, such as rocks, concretes and other microinhomogencous solids.

PACS no. 43.25.Dc, 43.25.Ed, 43.25.L}, 4335.Cg, 91.60.L}

1. Introduction. Different mechanisms of
amplitude-dependent losses

The last 10-15 years are marked by growing intcrést to studies

~ of nonlinear effects exhibited by elastic waves propagating

in so-called microinhomogeneous media [1-18). This class
comprises a wide variety of apparently different materials
such as rocks, concrete and similar construction materials,
grainy media, polycrystalline metals, etc. In many cases those

. media are characterized by anomalously high elastic nonlin-
carity compared to “normal” homogeneous solids such as.

single crystals or amorphous materials like defect-less glass.
In the same microinhomogencous solids, besides the pro-
nounced elastic nonlinearity, acoustic wave dissipation is
also significantly increased in magnitude, while functionally
their absorption coefficient is approximately linearly propor-

. tional to the wave frequency in contrast to the quadratic-in-

frequency law typical for “normal” viscous absorption [19-
23]. Another interesting feature of losses in microinhomo-
geneous solids is their pronounced dependence on the wave

amplitude [1, 5,7, 18, 23~26). In some cases the complemen- -

tary nonlinear elasticity and the amplitude-dependent losses
could be described by phenomenological stress-strain depen-
dencies of hysteretical types, for example, to account for the
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effects of nonlinear resonance frequency shift to lower fre-
quencies and of the accompanying decrease in the resonator
quality factor {5, 7, 18).

On the other hand, in a number of experiments with similar
(or even the same) samples of microinhomogencous solids,
the material nonlinearity apparently manifested itself in'al-
most purely dissipative manner, for example, in expetiments
on damping of an ultrasonic signal under the action of an-
other, lower-frequency, acoustic wave [{27-29, 51, 54]. In
particular, it was mentioned that the relative change in ab-
sorption of the probe ultrasonic pulse under the action of the
other strong ("pump”) wave could reach dozens of percents,
while the change in the pulse propagation time was hardly
detectable. These results could not be explained by the hys-
teretic nonlinear terms and required to introduce amplitude-
dependent losses in the macroscopic state equation of the
medium [27-33]).. However, in the phenomenological form,
cither hysteretical or alternative nonlinear-dissipative phe-
nomenological approximations of state equations could not
clarify the relationship between the physical microstructural
features of the material and its acoustical properties, and
the question on physical mechanisms of the microstructure-
induced nonlinearity remained open. ‘

The comprehension of this problem is of high importance
for exploitation of the nonlinear acoustic effects in diagnos-
tical applications, which seems to be very attractive, because
“structural sensitivity” of both the dissipative and elastic (re-
uctive) nonlinear effects is often drastically higher as com-
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pared with linear acoustic manifestations that are conven-
tionally used in acoustical diagnostics.

Recently, a series of papers was published [34-40] in
which the elastic (both linear and nonlinear) and linear dis-
sipative material properties were considered from a unified
point of view in the framework of an instructive model of a

microinhomogeneous solid. Those anomalous (compared to -

homogeneous materials) properties were consistently consid-

- ered as complementary manifestations of material microde-
fects which are significantly softer than the surrounding intact
matrix material. The models [34-40] allow for determining

the relationship between the material microstructure and the

linear and nonlinear elastic and dissipative properties of the

medium. In particular, this approach allowed for effective

- modelling of the anomalous increase in elastic nonlinearity

together with the almost frequency-independent quality fac-

-~

tor intrinsic to the majority of microinhomogeneous solids. -

In the mentioned papers, however, the analysis was restricted
to the cases of the linear absorption and purely elastic non-
linearity. The present paper further develops this approach.
An explanation is proposed for amplitude-dependent losses
in microinhomogeneous solids, which requires neither non-
linear viscosity (friction), nor quasistatic hysteresis at the

. defects, and can either accompany conventional hysteretical

losses or act independently.

Before directly tumning to the consxderanon of the men-

tioned mechanism, it is important to note that the terminol-
ogy related to the rapidly developing nonlinear acoustics of
microinhomogeneous media is not yet generally accepted,
which may cause confusion concerning even basic terms.
For example, recently the terms "mesoscopic elasticity” and
"mesoscopic material” were introduced (e.g., review [18])
in addition to the older terms "microinhomogeneous mate-
rials" and "microstructural nonlinearity” (e.g. review [5)),
which are used in this paper, and which relate to exactly the
same class of materials and phenomena. Another confusing
example is the use of expressions "quadratic” and “cubic”
nonlinear terms. They may mean the same being defined e¢i-
ther.using the power expansion of the stress-strain relations

" [17] or the elastic energy density [18]. Besides, this field of
- research is strongly influenced by such disciplines as nonlin-

ear optics, nonlinear seismics, mechanics, material science,

- etc., for which the terminological and conceptual differences

are rather significant. Therefore, in order to avoid possible
misunderstanding ‘or confusion in the ideas and terms, we

" recall bricfly a few important concepts and specify the cor-

responding terminology to be used below.

Note first, that a vast amount of research related to
amplitude-dependent attenuation in microinhomogeneous
solids generally accepts that this phenomenon is essentially
connected to the microstructural features. Concerning partic-
ular realisations of this general idea, it is possible to divide
existing approaches in two main groups corresponding to
two essentially different mechanisms of the macroscopics
nonlinear losses.

The first mechanism is based on the assumption of hys-
teresis in the stress-strain relation of the microstructural de-
fects (for example, [5, 7, 13-18, 24)] and literature herein).

Due to these hysteretical losses at the defects, which are de-
scribed by the non-zero area of defect’s hysteresis loop on
the stress-strain plane, the macroscopic losses in the material
exhibit amplitude-dependence. Different measures of losses
may quantitatively characterise this effect; for example, qual-
ity factor Q of the material, or the decrement § = 7/Q, orthe
attenuation coefficient may be used {24]. Particular physical
(at the atomic-level) origin of the hysteresis may be differ-
ent (adhesion at interfaces, dislocation movement, etc.), but .
the most important common distinction of hysteresis of any
nature is the non-zero area of the macroscopic stress-strain
loop.

The second essentially different mechanism is bascd on
the assumption of some friction (or, more general, a non-
linear viscosity for which the dry friction is a special case)
between defect’s edges (at cracks, intergrain contacts, etc.)
[21, 24, 25, 27, 32, 33, 41, 42). In certain cases, for exam-
ple, for friction with stick-slip, the stress-strain curve may
also exhibit quasistatic loops with a non-zero area. The latter
means that such cases may be reduced to the hysteretical
type and the losses may be considered in terms of hystere-
sis of frictional origin [24]. However, in many other cases,
¢.g., when the viscous (frictional) force at the defect depends
nonlinearly on the velocity of defect’s strain variation, there
is no quasistatic hysteretical "stress-strain" curve with non-
zero arca. Nevertheless, thc_macroscopic attenuation in the -
material will exhibit amplitude-dependence of the essentially
non-hysteretical origin [27, 28, 31-33, 41]. ’

In this paper we suggest another mechanism which cannot
be reduced neither to the hysteretical, nor to the nonlinear-
frictional mechanisms mentioned above. It implies the fol-

- lowing properties of the defects: (i) conventional linear

viscous-like losses and (ii) amplitude dependence of the de-
fects’ elastic parameters, which is typical of cracks, contacts,
etc. (in other words, the elastic nonlinearity of the defects [12,
43, 44)). It is shown below that the combined influence of
these two factors also results in the macroscopic amplitude-
dependent attenuation. The amplitude dependence of de-
fect elasticity may originate, in particular, not only from
the purely elastic nonlinearity, but also from a hysteretical
nonlinearity of the stress-strain relation of the defects. Nev-
ertheless, itis incorrect to claim that in the latter case the new
mechanism becomes hysteretical, because the main feature
of hysteresis; the non-zero area of the stress-strain loop, isnot .
essential for the third mechanism at all. Only the nonlinearity
of defect’s elastic properties is essential, and this feature is
common for both hysteretical or purely elastic nonlineari-
ties. This difference between various mechanisms should be -
clearly distinguished: not all effects occurring in hysteretical
materials are of essentially hysteretical origin.

This resemblance and difference between the mechanisms
should not be confused, which is especially important forin-
terpretation of experimental results. Indeed, it is well known
that experiments normally indicate that real defects exhibit
not purely elastic, but just hysteretic nonlinearity [24, 5, 7,
11, 18]. This means that in real solids, the formulated non- -
hysteretical mechanism may be accompanied by amlitude-
dependent attenuation due to conventional, essentially hys-

N
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teretical losses. However, in some special cases it is possible
to distinguish manifestations of these different mechanisms,
and the non-hysteretic mechanism may dominate. The cor-
responding examples are discussed in the experimental part
of the paper.

Another important issue, which also may cause confusion -

when . interpreting experiments, is the necessity to clearly
distinguish local and non-local effects. From this point of
 view, all three above mechanisms influence local properties
of the microinhomogeneous material. However, besides the
local change in material properties due to either hysteretical
or the other nonlinear-attenuation mechanisms in microin-
homogeneous materials, additional influence of essentially
spatial features of nonlinear interactions may result in appar-
ently similar effects. In this context, paper [41] demonstrates
that hysteretical nonlinear terms retained in the wave equa-
tion yield another interesting prediction: the possibility of
amplification of a weak wave propagating in the opposite di-
rection to the second strong wave. It is pointed outin {41] that
this effect is due to the energy synchronously scattered from
a strong wave propagating in the opposite direction to the
weak one, since the interacting waves create a kind of a dy-
namic diffraction "grating” due to the material nonlinearity.
Synchronous interactions of such type are also well know in
optical dynamic holography [45] for materials which exhibit
‘cubic (that is odd-type) reactive nonlinearity. The hysteretical
term considered in paper [41] is also the nonlinearity of the
odd-type, which provides conditions for synchronous inter-

action of the counterpropagating waves. By analogy with the

optical phenomena, the results presented in [41] for waves
- of identical frequency, may be extended for the cases of dif-
ferent frequencies, copropagating and standing waves, and
yield other interesting predictions. However, we point out
that the non-zero area of the hysteretic loop is not crucial for
such a synchronous scattering, and, therefore, although the
effect is predicted in [41] for the hysteretical medium, the
nature of the phenomenon is not essentially hysteretic,
Concluding we stress once again that one should be rather
careful when interpreting experimental effects related to ap-
parently amplitude-dependent attenuation (or amplification
in some cases), whether one or another mechanism is behind
the experimental observation. Actually real materials may ex-
hibit effects that are formed by different mechanisms simul-
taneously. Moreover, the discrimination and interpretation of
, the effects may be complicated due to additional influence
of resonances in samples of finite length or by space-time
non-local effects as in the above discussed case of interac-
tion of counterpropagating waves. Concerning materials with
hysleresis, it is also necessary to clearly distinguish whether
the particular effect is essentially hysteretic or non-hysteretic
(that is the non-zero area of the quasistatic stress-strain loop
is crucial for the effect or not). To the authors’ knowledge,
these distinctions were not enough discussed in the pertinent
publications, so we felt the necessity to address these ques-
tions before turning directly to the formal consideration of the
qualitatively formulated non-hysteretical and non-frictional

"third mechanism" of macroscopic amplitude-dependent at-

tenuation in microinhomogeneous materials.

Figure 1. Spatial orientation of a defect.

The suggested mechanism yields a number of conse-
quences allowing to discriminate it experimentally from

“the other mechanisms, and to account for experimentally

observed effects of nonlinear-dissipative character [27-32),
which could not be attributed to hysteretical losses.

2. Main features of the material microstructure

As a basis for the formulation of the new mechanism of the
amplitude-dependent losses, 2 brief outline of the medium
model together with the main results obtained for linear elas-
tic/dissipative properties is recalled following paper [40].
The model of a microstructured medium implies that the solid
miatrix contains some defects-inclusions (grains, cracks, etc.)
whose scale is larger than the atomic size, but small compared
to the acoustic wavelength and whose compliance (softness)
is much higher as compared to the surrounding defect-free
material. Due to the highly increased strain and the velocity
of strain changes, the volume density of the elastic energy
and its dissipation rate are both significantly (by several or-
ders of magnitude) increased at the soft defects compared to
the surrounding homogeneous matrix material. It was argued
in paper [40] that in most solids whose Poisson’s ratio - is
not close to the “liquid” limit -y = 0.5, the highly compliant
defects can be approximated by planar objects (as shown in
Figure 1 for one of the defects whose spatial orientation is
determined by angles 9 and ().

The defects are assumed to be isotropically oriented in

- space, so that the material is considered as average-isotropic

within volumes containing large amounts of the defects. The
inter-defect distance is supposed to be significantly larger
than the defect diameter. This condition allows one to con-
sider the stress applied to-a defect as given and makes it
possible to neglect the perturbations caused by other defects.
It is also assumed that the characteristic spatial scale of the
average stress field (i.e., the length of an elastic wave) is
significantly larger than the inter-defect distance.
Concerning the elastic properties of such inclusions, it
was argued in [40] that the planar defects should be highly
compliant with respect to stress applied along the axis normal
to the defect plane (see Figure 2a), while the defect strain due
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to compression in the in-plane direction (see Figure 2b) is
much smaller and is of the same order of magnitude as in the
intact material. Analogously, in some cases the defects can
be highly compliant with respect to a shear in-plane stress
(see Figure 2c), while in response to a shear stress apphed in
the normal direction (see Figure 2d) the defect compliance is
comparable to that of the intact matrix material. In order to

quantitatively characterize defect’s compliance in response

to normal stress o, and to shear stress g in the in-plane
direction, small parameters { < 1,{ € [0,1}and § € 1,
€ € [0, 1] are introduced which relate the effective moduli
E4 and G4 of the defects with Young’s modulus E and shear
modulus G for the matrix material:

 Es=(E, o)
Gq = EG. ()]

In particular cases for which models are available (e.g., for
cracks modeled by penny-like cuts [46] or by more sofisti-
cated models [42, 43]), the compliance parameters can be
related to defect’s dimensions. Otherwise, for our purposes it
is enough to use the phenomenologically introduced elastic
characteristics ¢ and &. In addition, the defects are character-
ized by effective viscous parameters g; and g2 with respect
to their normal and shear deformation. For a defect with a
given surface area S and initial thickness L < /S, the nor-
mal component of stress o, (see Figure 2a), in terms of the
introduced notations, is related to the variation of the defect
thickness X, by the following equation:

Xn dX,

Sop = SEd—L— ta—4 = SCE— + 91 Xn, (3)

. where dX,,/dt = X Under the action of the in-plane
shear (tangential) stress o', (Figure 3c) the shear (tangential)
deformation X, of a defect is described by a similar equation
of state (notations are clear by analogy with equation 3):

X, 4% _
L "% a

. Note that physically the effective viscosity of the defects most
" likely is associated with thermal losses which are essentially
increased at the defects due to local gain of strain and in-
" creased thermal gradients in the their vicinity [47, 48], and,
in presence of a fluid inside the defects, conventional viscous
losses may occur. For the present analysis it is quite enough
to take these losses into account via the viscous coefficients
" g1,2 as their atomic-level origin and the exact magnitudes
are of secondary importance for the resultant macroscopic
absorption {40].

So, = SGq B SEG-—— + oX,. 4

The orientation of the defects with different given compli-

ance is characterized by a distribution function u(%, g, ¢, §)
which depends on the orientation angles 1, ¢ and on the
non-dimensional elastic parameters {, §. (Note, that, as it is
argued in [39, 40), the distribution over viscous parameters
is of secondary importance and here it may be omitted, since
the below results show that in a wide frequency band the
macroscopic attenuation in the material does not depend on

llllqll,_. =

Pr1rtir— —
a b
= ===]
c d

Figure 2. Schematically shown a disc-shape (planar) defect under
the action of applied stress. (a) — normal compression; (b) — in-plane
compression; (c) — in-plane shear strcss. (d) — shear stress in normal
direction.
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Figure 3. Schcmatmally shown frequency dependencies 6¢+2) W)
displaying the wide frequency band @1,21,2 < w < by 2fly2 in
which the decrement magnitude is npproxlmately constant.

the viscosity of the defects). Further, the partial distributions
v(¢) and v(€) over elastic parameters , £ can be introduced:

Q) = 7(190 / ] o($, 9, ¢, §) sin ¥ dip €,
[+] 00

2 x 1
we) = [ [[vbec.0smpapac )
0 00

For example, v(¢)d( characterizes the relative volume con-
tent (their volume per unit volume of the material) of arbitrary
oriented defects whose parameter { of the normal compliancs
belongs to the region [¢, ¢ +d(]. Partial distribution v(£) has
the similar meaning. Therefore the total defect content v; is
determined by the following expression:

ve = / w0dc= [vieree ®

11

/d¢///v(¢.<p,c,6)51n¢d¢dcd§

000

Note that according to the above accepted assumptions, the
tota] defect content is small: v; < 1. It is important that the
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distributions over the elastic parameters v(¢), v(£) and the
distribution v(10, ¢¢) over the spatial orientations are essen-
tially independent, so it is possible to perform the spatial-
angular averaging independently for defects with different
clastic parameters. In particular, for isotropic orientations,
the uniform angular distribution is normalized as:

W)= ()

3. Microstructure-induced changes in the linear elastic .

moduli and in the decrements: basic linear
approximation

Here we briefly summarize the main results on the micro-
structure-produced variations in the material elastic moduli
and in the decrements for different types of waves which are
obtained in [40] in the lincar case and which are essential for
further discussion of nonlinear effects. The non-dimensional
decrement @ has the conventional meaning, and is related to
the wave absorption coefficient a as § = a) = ac/ f, where
A is the wavelength of the elastic wave of a given type, f is
its frequency, and c is its velocity. The same decrement can
be also expressed via the ratio § = Wais, /(2Wa.), where
Wais. means the wave energy losses in a unit volume during
one period of a harmonic wave, and W, is the maximal
value of density of the clastic energy of the wave motion.
Using the energy balance approach, the following expres-
sions for moduli E.g. for the Young (rod) wave, G.g. for the
shear wave and M,g. for the longitudinal wave were derived:

Eeﬂ' .
E

C‘f' = [1+ N,/(1+7)+—N2] i, v(9)

';Meﬂ.

E

= [1 + lNl + -5—(1 + 'r)Nz]_l, (8)

(a]}
.
Q)

[1 + = N1/(1 ")
+—MuwNWﬂﬂ(W
[+ Emsa e+ E)

. (1 + '3'N1/(1 - 2’7))]_1

Here notations F, G, and M relate to the moduli for the
matrix material and &, G, and M are the corresponding non-
dimensional moduli for the microinhomogeneous medium.
Parameters N7 and N, in expressions (8) through (10) have
the following meaning: '

= [vora M= [wone

Below they are called the effective defect densities. Physi-
cally, as it is clear from equations (11), parameters N; and
N, are’determined jointly by the compliance of the defects
and their concentration. In case of identical defects with fixed
values of compliance parameters { and &, the distributions
have the form of delta-functions, so that:

Ny =w/¢, Ny =vf€ (12)

However, it is natural to assume that real defects are not
identical and are characterized by a wide distribution over
their parameters of compliance, and it is convenient to ap-
proximate the distributions by wide II-shape functions (by
analogy with papers [37—40]):

Q) 5 _
_ J v, when( € [a1,b1),01 € by K 1

v(() = { 0, when ¢ ¢ [a;,b1), (13)
— (2)1 when ¢ € [az,b3),0; € b2 K€ 1

v(§) = { 0, when ¢ & [a2, bs). ' (14)

Therefore, total volume densities are given by expressions:
1 ' -
«w=/vm«=m—mem¢%
0
1
“=/vm« (b2 — a2)f? = bpvfD. (15)
(i}
Parameters N7 and N then obtain the following forms: ’
N1 =Vt ln(bl/al)/bl, N2 =‘Ug1n(b2/a2)/b2. (16)
As a second result, calculating the period averaged losses
Wais. at the visco-elastic defects due to their normal com-

pression (decrement (1)) or shear deformation (decrement
6(2)), the following expressions were dcrived [40):

g(i)(w) = ,n.v‘()l) eﬁ (T2(¢,¢)) arctan ——— /Q "

: (“comprcssxonal" losses), (17)
6 (w) = ,w(2) (T2 (¢, 9)) arctan —— /Q

(“shear" losses). (18)

Here notation D.g. is for one of the moduli E.g., Geg. Or
Mg, depending on the type of the considered wave. Char-
acteristic frequencies §2; o depend on the defects viscosity:
QO = ES/(q:1L), Q2 = ES/(g2L). Angular-averaged co-
efficients (T2 (¢, ¥)), (T2 (1, ¥)) are given by the following
expressions: '

r 1 + 27esr. 8esr.
5 15(1—ver.) 15(1—er.)?’
(T, 9)) = < 1/5,
| L 1/15,
(2 (1=274 )2
15 ( 1=,
(Tzz(‘P:‘p)) = < 2/15, (19)
| 4/15, ‘

for the plane longitudinal wave, for the rod (Young) wave,

-and for the transversal wave, respectively. -

. These expressions contain the effective Poisson ratio ves.
for the microinhomogeneous material, which can be readily
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obtained as a consequence of equations (8), (9), (IO) for
moduli Eeg., Geg. and Meg :

- =M+ (1 +7)N;
1+ %N] + f‘g(l +’1)N2 '
The total losses are determined by the contributions of
both decrements: §(w) = 81 (w) + () (w). Qualitatively
the frequency behavior of decrements §(1+2)(w) is shown
in Figure 3. It is essential that in wide frequency bands
a1,2012 < w < by 20,2 decrements (17), (18) are ap-
proximately constant (8(12)(w) ~ {12 (w) =const.), and
are primarily determined by the defect densities /V; and N:

VYeff. = (20)
N

o0 w) = Zof D2 (T, 9)
~ ”2 In(lf"; SDE(Te, D), (21)
8w = <2>D§<T;<¢,¢>>
72 N,
= 5 W (Tz (7 TI’)) (22)

whereas the viscous properties (21,2 = ES/(g1,2L)) are
not present in expressions (21), (22), and are not essen-
tial for evaluation of the near-constant decrements. These
results provide a plausible explanation for the numerous ex-
perimental data on near-constant decrements typical of many
microinhomogeneous solids [19-23]. Therefore, expressions
(8) through (22) allow for evaluating the microstructure-
induced linear absorption, and relate its magnitude with
the complementary decrease in the material elastic moduli.
The corresponding detailed discussion of the linear results is
given in reference [40].

As it was already mentioned in the introduction, the same
microinhomogeneous solids, for which the almost frequency-
independent decrement is typical, also exhibit anomalously
high elastic nonlinearity, and nonlinear generalizations of the
above considered model readily account for this phenomenon
[31-33, 38]. This elastic nonlinearity pronouncedly mani-
fests itself, for example, in generation of higher harmonics
and softening of the material, which is rather pronounced
even at small strain magnitudes € o 10-7...107% [5, 7,
11, 23]. In contrast, solids with a homogeneous structure
like glass (whose nonlinearity is determined by the inter-
atomic potential) does not exhibit noticeable nonlinearity at
such small strains. It is essential that just for the same strain
amplitudes € o< 1077...107°, at which for a microinho-
mogeneous solid its elastic moduli exhibit pronounced de-
crease, the decrement also becomes amplitude-dependent,
normally exhibiting significantincrease [7, 18,23-25]. These
amplitude-dependent losses are traditionally attributed to
adhesion-hysteretical or frictional losses at the microstruc-
tural defects [24-26]. However, as it is shown in the next
sections, in microinhomogeneous solids another mechanism
of amplitude-dependent losses must also occur, which im-
plies only linear viscous-like dissipation and elastic nonlin-
earity occurred at the defects, and for which neither adhesion
hysteresis, nor frictional losses are not crucial.

4. Amplitude-dependent variations in the elastic
moduli and the decrements: formulation of the
non-hysteretical mechanism

According to the summarized above expressions, the micro-
structure-induced variations in the material parameters are
determined by the same properties of the defects both for the
macroscopic elastic moduli and for the decrements. Namely,

" effective defect densities /N; and N are most important (see

the structure of equations (8) through (10) and (21), (22)).

In the analysis of the elastic properties and of the atten-
uation, until now the effective densities /N; and N5 of the
defects were considered as given following the linear model
[40]. This approximation corresponds to the assumption that
the amount of the defects is fixed, and the elasticity of the de-
fects does not depend on the applied stress or, in other words,
that the defects are perfectly linear. However, it is well known
that microstructural defects in solids (like intergrain contacts,
microcracks, etc.) are essentially nonlinear [12, 43, 44]. The
linear description is only an approximation valid for small
variations in the applied stress and the material strain.

Therefore, generally speaking, the elastic parameters of
the defects ¢ and £ depend on the applied stress geyt. (al-
ternatively this dependence may be expressed via the defect
deformation). To take this effect into account, the equations
of state of the defects have to be complemented with nonlin-
ear terms, for example, in the following form:

Son = SCE(X,/L)1+ Fi(Xn/L)] + 01 Xn,  (23)
So, = SEE(X, /L)1 + Fa(X./L)] + g2 X (24)

In these equations, non-dimensional functions Fy( ) and
F5( ) characterize the deviation of the "stress-strain" rela-
tion for individual defects from the linear law. For example,
when the factor (X/L)F(X/L) (indexes are omitted here)
is a quadratic or cubic function, the defect exhibits quadratic-

or cubic-in-strain nonlinearity, respectively. Generally speak-
ing, these functions may be hysteretical as well. Parameters
C § are the initial (unperturbed) values corresponding to the
defect’s elasticity in the unperturbed state, whereas the actual
magnitudes of the defect’s parameters of compliance depend
on the defect’s strain via the functions Fi 2( ):

((Xn/L) = {[1 + F(Xa/L)], (25)
€(X,/L) = &1 + Fa(X-/L)]. (26)

This amplitude-dependence of nonlinear elasticity of in-
dividual defects results in the corresponding amplitude-
dependence of the effective densities N7 7, because they
depend on both the amount of the defects and their elas-
ticity (see equations 11). Therefore, the nonlinear elasticity
of the defects must influence both the elastic parameters of
the material and the decrements via the amplitude depen-
dence Ny 2 = Ny2(0ext.) (see equations (8)—(10) and (17)
(18), (21), (22)).

Concemning the influence of the nonlinearity of individual
defects on the macroscopic elastic nonlinearity one may refer
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to papers [31-33), in which this mechanism is discussed in
details in the 1D approximation, and 3D features will be con-
sidered elsewhere. In the present discussion, howeve;, we are
focused on the dissipative amplitude-dependent properties. In
this context, note first that for a perturbation (wave), whose
- stress amplitude is small compared to the applied external
quasistatic stress Texq,, the dependence Ny 2 = Ny 2(0ext.)
via functions F} () corresponds to dependence of the mate-

rial parameters on static (or slowly varying) external loading
of the medium. This "instantaneous" dependence on a slowly

. varying load is one of manifestations of the material nonlin-
earity, and the derivative dc/dgex:. of the wave velocity
with respect to the external quasistatic stress is often used
to quantify the medium elastic nonlinearity [13]; the deriva-

tive d§/doex:. may be analogously used for the dissipative

" nonlinearity.

Then a question arises if analogous amplitude-dependent
variations in the material properties could be caused by a non-
quasistatic, an oscillatory stress (e.g., stresses in a harmonical
wave): ‘

o =oggcos(wt), €=¢gpcos(wt). (27

Evidently, if the nonlinear corrections to the defect elastic-
ity F1(-) and F3( ) (see equations 25, 26) were perfectly
odd functions, then the changes in defects’s elsticity during
positive and negative semi-cycles of the oscillatory defor-
mation would be exactly compensated thus resulting in zero
period-averaged change in material properties. However, it

is well known that both the theoretical models of defects.

(e.g. contacts [48, 44] or cracks [43]) and the experimental

data [5, 6, 16, 21-23] on medium softening at higher oscil- -

lation amplitudes indicate that defects’ elastic nonlinearity
(X/L)F(X/L) in equations (23), (24) has an odd part (i.e.
function F'( ) has an even part), and, consequently, such a
period-averaged compensation of nonlinear corrections nor-
mally does not occur and, therefore, the period-averaged den-
sity (V') must exhibit amplitude dependence:
(N) = N(ao) = N(0) + AN(oo). - (28)
In principle, nonlinear correction AN(op) can be predicted
from equations (23), (24) and (11) if we introduce explicit
expressions for functions F} 2( ) (and, if necessary, assume
that the number of defects is not fixed due to fracturing and
creation of new defects at strong enough stress). However,
rather general and practically important conclusions can be
made without specifying these functions and even without
the assumption whether the number of the defects is fixed or
not. Namely, we may use expressions (8)—(10) and (21), (22)
with amplitude-dependent density N = N(oy) to evaluate
the complementary variations in the decrements and in the
period-averaged material moduli (which may be verified ex-
perimentally). Such evaluation does not require an explicit
form of N(co). Numerical examples of the corresponding
calculations will be given in the next section.
Let us summarize now the main assumptions from which
amplitude-dependent attenuation of the described above type
has been predicted. The effect was inferred supposing only

conventional linear (viscous or thermal) losses and nonlin-
earity of elastic properties of individual defects. It is clear
from equations (17) through (25) that it is the nonlinear vari-
ation in elastic parameters of the defects, which influences
the rate of the conventional viscous-like energy dissipation at
the defects. The variation in the elasticity of the defects and,
therefore, the corresponding variation in their effective den-
sity N(ao) may be produced by either hysteretic or purely
elastic (non-dissipative and non-hysteretical) nonlinearity of
the defects, as follows from equations (11) and (23)-(26).
Therefore, the mechanism consists of the combined influ-
ence of conventional linear losses at the defects and their
nonlinear elasticity. Joint effect of these factors results in
amplitude-dependence of the macroscopic attenuation in the
microinhomogeneous material.

Note that traditionally, the experimentally observed com-
plementary amplitude-dependent variations of the elastic
moduli and of the losses were attributed by many authors

o a hysteretical nature of the material stress-strain relation

[5, 7, 15, 18, 24). Indeed, it is natural to expect appearance
of a hysteresis, because partially inter-atomic bonds in the
material are broken at opening of the microdefects. How-
ever, any hysteresis inherently implies both the dissipation
described by the area of the hysteresis loop and the deviation
from the liriear elastic behavior. The hysteretical nonlinear-
ity of the defects thus must also influence the macroscopic
attenuation via the above considered mechanism (although
the non-zero area of the hysteresis loop is not crucial for the
effect). Therefore, the described amplitude-dependent non-
hysteretical losses must occur in a hysteretical medium as
well and co-exist with conventional hysteretical losses.
Concluding this section it is worth to briefly address the

role of the second traditionally discussed mechanism of the
amplitude-dependent attenuation, which is based on fric-
tional stick-slip at the defects surfaces [25, 42). Evidently,

'such an cffect may take place in a strong wave field, how-

ever, the occurrence of this mechanism seems to be rather
unlikely at moderate strains € o< 1077 ... 10~ and for typ-
ical sizes of microdefects of the order of fractions of mil-
limeter [25, 47]. Indeed, for example, the maximum slip Au
for a crack of length [ is roughly of the order Au =~ &l,
and this estimate does not depend on a particular model of
the crack [25]. This requires the crack’s length to be too
large (about ! =1c¢m or more) to provide the interfaces slip
about several atomic sizes (107 cm), which is necessary for
frictional losses [25, 47]. Otherwise, for smaller defects, the
necessary strain amplitude must be 1-3 orders of magnitude

“higher (¢ o 1075...10~2 or even more). Nevertheless,

in many cases solids manifest amplitude-dependent. attenu-
ation and complementary decrease in elastic moduli even at
€ < 1077...1075, although they did not contain such large
cracks at which the frictional slip may occur [24, 25]. Thus,

the slip hypothesis cannot be accepted in this case, whereas

the suggested “cascade” mechanism (nonlinear clasticity +
viscous losses = amplitude-dependent attenuation) can read-
ily account for existence of the amplitude-dependent attenu-
ation and variations of the elastic moduli at moderate strains
€ <£1077...1075. From experimental point of view more
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important is the problem of the effect separation from con-
ventional hysteretical losses. Therefore, below we shall not
return to the comparison with frictional effects, but focus on
the relation of the proposed non-hysteretical and the conven-
tional hysteretical mechanisms, since both may occur at the
same experimental conditions. .

5.  Similarity and distinctions between -
" amplitude-dependent losses due to hysteresis and
due to the suggested non-hysteretical mechanism

According to the previous section, equations (21), (22) and

- (8) through (10) could be used to evaluate the corresponding

variations in material elasticity and the decrement due to the
dependence of the effective density of the defects (V) =
N(og) or (N) = N(&o)) on the wave amplitude.

Note that stronger stress may cause both the variation in

elasticity of individual defects and variation in their amount,
~ and these variations both influence IV (€o ). Rigorously speak-
" ing, the decrement (sec equations (21),(22)) depend on the

defect distribution function not only via the effective density
N(eo), but also via the logarithmic function In(b/a), which
is also determined by the distribution of the defects over the
clastic parameters. This logarithmic dependence, however, is
rather weak, so that even a large variation in the ratio b/a
suchasb/a ~ 10 < 103 gives only 20. . . 30% correspond-
ing variation in the logarithmn In(b/a). Additionally it could
be argued that at moderate amplitudes (£ < 107%...10~%),
such a strong perturbation in the defect amount is unlikely,
whereas the decrement often exhibits variations of 50~100
percent {24, 7, 27], that is significantly larger than the possi-
ble correction due to variation of the slow logarithmic func-

tion In(b/a). Bearing this in mind, for 2 moment we take

into account only the variation of the effective defect density
N(eo) in the illustrative estimates below. By similar rea-
sons (similar magnitude of corrections) we also neglect the

correction associated with the weak logarithmic dispersion -

of the elastic moduli, which is due to the influence of the
relaxation in the relationship between defect's deformation
and the applied stress. This effect may be taken into account
much like the linear dispersion of the elastic moduli [38—40],
since the nonlinear and linear microstructre-induced changes

in the elasticity has common origin and may be accounted.

for in the similar way.

In the estimate of the amplitude-dependent parameter vari-
ations, we consider the example of the defects that are
highly compliant only with respect to normal stress. This
assumption corresponds in our notations to the condition
Ni/N2 > 1 (cases N} /N2 ~ 1 and N} /N, < 1 may

be analyzed by analogy with the linear case [40], and yield

the same order of the effect magnitude). Using equations
(8) through (10) and (21), (22) and considering the effec-
tive defect densities as functions of the wave amplitudes
(N) = N(eo) = N(0) + AN(eo) we can calculate the
relative nonlinear variations in the elastic wave velocities

¢ Aeteo)) [em (D (€0))/2D = (1 - (D(e0)))/2 and the cor-

responding variation in the material decrement (A, (go)) as’
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Figure 4. Examples of calculations of the period-averaged nonlinear
variations in the wave velocities 100{Ac(€0))/c (the solid lines),
and the corresponding variations in decrements 100(A9§1)(eo)) ‘
(the dashed lines) and 100{A6%? (£0)) (the dotted lines). Parameter
Nz = N1 /10, Poisson’s ratio 4 = 0.3. (a) ~ Young’s (rod) mode,
(b) — shear wave, (c) — longitudinal wave.

functions of AN (go). We do not need to explicitly specify

* the AN(eo) as is argued above. Examples of the calculations

are presented in Figure 4 for the Young (rod) mode, the shear
and longitudinal waves. _
The plots demonstrate that the nonlinear variation in the -
magnitude of the decrement (Af.(eo)) may differ several
times for different waves, but by the order of magnitude
{AB.(gq)) is the same as the relative variation in the wave
velocities (elastic moduli) (Ac(eo))/c = (AD(ep))/2D.
However, the relative change in the decrement magnitude
(A8.(g0)) /B0 is significantly larger than (AD(eg))/D, be-
cause the initial decrement value 6y = = /Q is normally
rather small. For example, magnitudes of the quality factor
Q = 50...300 or higher are typical of many rocks and poly-
crystalline metals [19, 22, 23]. Therefore, the nonlincaﬁty-

* induced relative variation in the decrement (AQ.) /86 can

often be by one-two orders of magnitude larger than the rel-
ative variation in the elastic moduli (AD)/D =~ 2(Ac) /e
Indeed, experimental data by different authors indicate that
it is a typical situation: nonlinear decrease in sound velocity

A Y
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of about 1...2% only is often accompanied by decrease in
the quality factor by 50-100% or more (see e.g., [7, 21, 24]).

It is well known that approximately the same magnitude
of the ratio between the amplitude-dependent decrement and
the relative variation in the elastic moduli is a general fea-
ture of conventional hysteretical models [13, 24). Indeed,
this is quite evident physically, because the same break of
inter-atomic bonds causes, on one hand, decrease in the elas-
tic modulus (A D(go))/D and, on the other hand, results in

the hysteretic losses, which are macroscopically described

by the area of the hysteresis loop. Comparing this conse-
"quence of conventional hysteretical models with the results of
the calculations of the non-hysteretical amplitude-dependent

variations in the decrements and elasticity presented in Fig-

ure 4, one should conclude that both mechanisms appar-
ently predict similar effects of the same order of magnitude.
This coincidence is the plausible reason why in many works
there has been no report on significant discrepancy between
experimental data on amplitude-dependent attenuation and
hysteretical models (for example, [5, 7, 11, 18, 24] and ref-
erences herein). ’ '

The question arises if itis at all possible to distinguish these
mechanisms, and to verify the suggested non-hysteretical
mechanism experimentally? The answer is not evident at
first glance, sincé by choosing appropriately parameters of
a hysteretic curve, it is often possible to fit experimental
data on amplitude-dependent variations in absorption and
elasticity with a reasonable accuracy. Therefore, to address
the question it is necessary to compare cases for which these
mechanisms- give essentially different predictions.

Note that the above conclusion on the close similarity
of manifestations of both mechanisms was in fact obtained
only for the case of self-action of a wave, that is, when a
wave changes its own losses and velocity. However, as it
- is clear from the above consideration, the non-hysteretical
mechanism should change the elastic and dissipative material
properties not only for the wave itself, but also for other waves
with different frequéncies. For example, the non-hysteretical
mechanism readily allows for estimating the influence of a
stronger ("pump", using the terminology of nonlinear optics)

wave gp = g cos(wpt) or €, = €g cos(wot)) on another

weaker probe wave (o, = Gg cos(wt) or ey = &y cos(@t)),

“for which & < &g and @ # wp. The pump wave should
change both the mean velocity and the losses for the weak

- probe wave, and these changes produced by the stronger
wave can be considered as given. Therefore, the effective
density of the defects can be considered as a function of
the pump wave amplitude ((N) = N(gg)). Then the mean
change both in the elastic moduli and in the decrements for
the probe wave can be consistently evaluated using equations
(8) through (10) and (21), (22). ‘

Now let us discuss whether it is possible to separate this
type of the sound-by-sound attenuation from conventional
hysteretical losses, that is to eliminate for the probe wave the
influence of losses connected to the hysteresis loops. In fact,
the method of such elimination of hysteresis is well known,
and it was used long ago in mechanics of high-precision mea-
surement devices containing pendulum-like sensitive compo-

nents mounted on shafts. There was a problem how to avoid
the frictional stick hysteresis in the dependence between the
tilt angle of the pendulum and the applied force. Conven-
tional liquid lubrication could not help, because in the initial
state the pendulum had to be motionless, but the liquid lubri-
cation could prevent stick only when the contacting surfaces

- have high enough relative velocity [49). An alternative effec-

tive solution of the problem was based of the use of rapidly
(either uniformly or oscillatory) rotating shaft of the pendu-
lum, which provided high relative velocity at the interface of
the solids and prevented the dry-friction stick and the corre-
sponding hysteresis. Nowadays similar methods are widely
spread not only in tribology to exclude frictional stick-slip
phenomena [49), but in other applied problems in order to
climinate or to smooth influence of hysteretical, frictional and

~ other nonlinearities (the so-called dither method) [50]. Physi-

cally both the adhesional and friction-stick hysteresises orig-
inate due to the work necessary to break inter-atomic bonds.
The macroscopical manifestation of these phenomena in a .
hysteresis curve is also similar in mechanical and acoustical
problems. Therefore, the same method may be applied for
our purpose to eliminate the influence of hysteretical losses
for the weak probe wave (oscillation) by means of exciting in
the medium an additional (pump) wave whose deformation
rate is much higher than that in the probe wave. Due to this
additional high-rate deforrnation the hysteretical losses will
be eliminated for the weak probe wave, but certainly they
will occur for the pumnp wave itself.

In the discussed case, this method has a clear macroscopic
interpretation which does not depend neither on atomic origin
of the hysteresis, nor on macroscopic form of the hysteresis
curve. Indeed, in order to make the hysteretical losses mani-
fest themselves, it is necessary to provide reverse movement
of the point of state of the medium along the hysteretic loop
on the “stress-strain” plane. This means that the strain rate
in the probe wave must be large enough to produce such
a reverse movement of the state point, thus producing hys-
teretical losses for this wave. In such a case, the area of the
hysteretical loops (that is the losses) of the probe wave may
be influenced by an additional stress field (the pump wave).
On the stress-strain plane, this case may be imagined, for
cxample, as a big hysteresis loop produced by a strong pump
wave and a number of small loops produced by the higher-
frequency probe wave, these smaller loops being embedded
in the big loop. However, if the velocity of strain variation
in the pump excitation is much higher than that in the probe
wave, there is no hysteretical reverse for the weak wave
(smaller loops do not exist), and the influence of hysteretical
losses is eliminated for such a weak probe wave, Certainly,
the weak wave is affected by the pump excitation via the ma-
terial nonlinearity, but the conventional hysteretical losses
for the probe wave are eliminated. The latter case is just
what is necessary in order to separate the influence of the
hysteretical and the non-hysteretical amplitude-dependent
losses. Namely, the same strong enough pump-wave will
affect the attenuation of the weak probe wave via the sug-
gested non-hysteretical mechanism and simultancously will
eliminate the hysteretical losses for the probe wave.
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The requirement of strong enough velocity of strain .

changes in the pump wave in case of harmonical excitations
is equivalent to the following condition in terms of wave
frequencies and strain amplitudes: v

- {(29)

. WoEg > GJE-,

where @, € refer to the probe- and wp, &g refer to the pump-

wave. This relation should be provided in experiments in’

order to exclude conventional hysteretic losses for the weak
probe wave. .

As another feature of the nonlineraity-induced change
in the decrement for the probe wave caused by the non-
hysteretical mechanism, it may be mentioned that the non-
linear decrement should not display significant dependence
on the probe wave frequency if the defects are significantly
distrubuted over their elastic parameters (see equation (14)
and the discussion of equations (17), (18) and Figure 3).
This prediction may be readily verified experimentally (see
the next section). Actually this consequence is the same
as for the linear decrement, because in the discussed "cas-
cade” mechanism (nonlinear elasticity + viscous losses =
amplitude-dependent attenuation) physical origin of energy
dissipation is the same as for the case of the linear attenu-
ation. Due to common origin with linear attenuation, other
features. of the amplitude-dependent part of the decrement

may be readily analyzed using equations (8) through (22)

for the complementary amplitude-dependent losses and the
clasticity changes. For example, the dependence of these ef-
fects on the type of the wave (longitudinal, shear) are readily
inferred (see examples presented in Figure 4).

Therefore, despite certain resemblance, important differ-
ences between the non-hysteretical and hysteretical ampli-

“tude-dependent losses can be pointed out, which allow for

separation of these mechanisms and experimental verifica-
tion of the predicted features.

6. Comparison with the experimental data related to
the suggested mechanism of amplitude-dependent
losses .

- In this section we start from examples of known [27-29]

experimental observations which cannot be explained in

the framework of the hystretical mechanism of ampliiudc-_

dependent attenuation, but which may be readily accounted
for in the framework of the proposed non- hysteretical mech-
anism. In addition, original experimental demonstrations are
presented. In all of these experiments, resonant longitudi-
nal vibrations at lower modes were excited in rod resonators
with one free and the other rigidly fixed boundary. In cer-
tain cases, additional high-frequency weak ultrasonic pulses
were emitted to observe the influence of the stronger res-
onant excitation. The rods were cut from several kinds of
rocks or from annealed copper which are typical microin-
homogeneous materials and exhibit pronounced amplitudc_—
dependent variations both in elasticity and in losses [5, 7,
27-32]. Let us briefly discuss these data from the point of

view of the formulated mechanism before turning to our ex-
perimental demonstration. .

Note that effects of wave self-action, such as the non-
linear shift of the rod resonance frequencies, amplitude-
dependent losses for the same resonance vibration, and gen-
eration of higher harmonics, conventionally were interpreted
using phenomenological hysteretical models [5, 7, 13, 31
of piece-wise parabolic type. This approach provided rea-
sonable qualitative description of each concrete effect, and
gave agreement within 20-50% between the model param-
eters inferred from different effects. Analogous results on
application of other approximations of hysteretical curves
to description of the rod-resonant self-action cffects were
reported in review [18] (see also references herein).

In the other series of experiments with the same materi-
als, effects of sound by sound attenuation were investigated -
for waves with significantly different amplitudes and fre-
quencies. In particular, damping of pulsed high-frequency
probe signals (several hundreds of kHz) under the action of
an intensive €5 = 10~%...10~3 resonant vibration at sev-
eral kHz was investigated [27-29]. The pulses propagated
twice the rod length (forth and back) and demonstrated pro-
nounced (up to 3 times) decrease in amplitude when the other
strong harmonical wave was excited at lower rod resonances
[27-29]. However, within the measurement accuracy (about
several percents) there was no apparent change in the pulse
propagation time in contrast to the easily observed nonlinear
attenuation. That is, in these cases the material nonlinearity
looked “purely dissipative”. From the pointof view of the dis-
cussion in the previous section, the conditions of climination
of hysteretical losses for the weak probe pulses were per-
fectly fulfilled in [27-29, 51]. The ratio of the amplitudes of
the weak pulses and the strong pump vibration £¢ /£ reached
10%...10%, whereas the ratio of frequencies of the pulse
carrier wave and the pump wave &/wy was only 40...70
times. Therefore, the amplitude of the velocity of strain vari-
ations in the weak pulse was definitely much less (10! . . . 103
times) than in the pump wave (see equation 29), and, thus,
not depending on a particular model of the material hystere-
sis, the influence of hysteretical losses for the weak wave
was eliminated with high accuracy, Nevertheless, the depen-
dence of the pulse attenuation on the pump wave amplitude
was very pronounced, and since it could not be attributed
to the influence of the hysteretical losses, it was supposed
that the material exhibits another mechanism of ampitude-
dependent attenuation [27]. To phenomenologically account
for the observed nonlinear attenuation, amplitude-dependent
viscous terms were added [27-32] to the equation of the
material state, which allowed for fair matching the experi-
mental data. The decrease in the probe wave amplitude may
be readily described, whereas the nonlinear dissipative terms
do not influence the wave velocity. Probably in some cases
such "purely dissipative™ nonlinearity may really occur due
to non-viscous friction in the defects, but this require higher
pump amplitudes, as it was argued in Section 4. On the other
hand, the same materials exhibited strong odd-type nonlinear
elasticity, since pronounced nonlinear shift of the resonance
frequency occurred in the resonators at excitation amplitudes

Y
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€0 = 107 ...105. Therefore, the conditions for manifes-
tation of the amplitude-dependent attenuation described in
Sections 4,5 were provided.

Now we shall make some estimates which can be applied
to the discussed measurements and which elucidate why
the complementary variation in the pulse delay apparently
was not mentioned in [27-29), although the above suggested
model predicts both the delay and attenuation for the probe
wave. Let us suppose the following experimental parame-

ters, which are comparable to those reported in [27-29]. Let -

take the sound velocity ¢ = 3600 m/s for the rod (Young)
wave; the carrier frequency of the probe pulse f = 200kHz;
the corresponding wavelength A = ¢/ f = 1.8.cm; the rod
length L = 30 cm. Then the pulse propagation time T forth
and back along therodis T = 2L /¢ =~ 170 ps. For a thin rod

~with one free and one rigid boundary, the modal shapes have

the no;mzalized forms p(z) = (2/L) sin(w(n — 1/2)z /L),

, [7], and, for example, the first quater wave-

length resonance has frequency F; = ¢f(4L) ~ 3kHz.
‘Experiments indicate that in the discussed amplitude range,

the nonlinear shift of the resonance frequency normally
is linearly proportional to the strain amplitude &g, that is
8F(e0)/Fn o €0 [5, 7, 18], and, therefore, the averaged
variation in the local sound speed is also linearly dependent
on the local strain amplitude, dc(eg(z))/c o £o(z). For ex-
ample, for the lowest mode £¢(z) o< 1 {z) o sin(wz/2L).
Conventional procedures of the perturbation theory yiceld for

~ the resonance frequency shift 6F,(go)/F, and for the per-

turbation of the pulse propagation time 6T '(gq) /T

8Fu(e0)/Fn = / 2eeo(@l 2 (2) gz,
sTeo)/T = - i°—‘%’”dz, (30)
therefore, in the considered case 6T(eo)/T = (3/4)

8F,(0)/ Fn, that is the relative variation in the pulse delay
time is 4/3 times smaller than for the resonance frequency.
For the pump amplitudes g = 107%...1073, the typical
magnitude of the resonance shift is 6F,.(Eo)/Fn = 1072,
which, according to (30), corresponds to the twice as big

time-averaged variation of the sound speed dc(eg)/c =

(27/3)6Fn(€0)/Fr =~ 2-10~2 in the pump-mode max-
imum. The corresponding time-delay for the probe wave
is 6T(g0) =~ (3/4) - 1072 - 170 s = 1.3 ps, which is
much less than the duration of the pulse containing sev-
eral carrier-wave periods, and is only about 1/4 of the period
1/f = 1/200kHz = 5 ps of the carrier wave. Such a small
averaged delay can be reliably noticed only when the pulse
envelope is synchronized with the carrier, and, therefore, co-
herent signal accumulation is possible. In experiments [27-
29] these conditions were not provided, the delay measure-
mentinaccuracy was 4 . . . § us, which explains why the pulse
shift was not observed.

We reproduced the discussed above experimental condi-
tions, but provided the synchronization of the pulse envelope
and- the carrier wave and the possibility of signal accumu-
lation by a digital oscilloscope. The experiment confirmed

Figure 5. Examples of normalized records of the central parts of the
probe puises. The thin line is the reference signal in the absence of
the pump wave; the thick line is the delayed and attenuated signal
in the presence of the pump wave. The amplification of the delayed

_ probe wave is 2.5 times larger than that of the reference sxgnal Both

rccords are accumulated over 32 shots.

that in the pulse envelope the nonlinearity-induced shift is
impossible to notice, but in the carrier wave the delay is
quite noticeable if coherent signal accumulation is used. An
example of such a record of the simultancously displayed
fragments of the reference pulse (thin line) without the pump
wave and the delayed signal (thick line) is presented in Fig-

_ ure 5. The strong pump-signal was filtered out by a high-

pass filter which provided >80dB signal reduction at the
pump frquency. For convenience, both signals in the record
are normalized to approximately the same amplitude, us-
ing 2.5 times smaller amplification for the reference pulse
in order to compensate the nonlinearity-induced attenuation
of the delayed pulse. Using the record, the delay may be
estimated as (6Txp.) ~ 0.4...0.5 ps. The corresponding
decrease in the resonance frequency for the pump wave (the
first resonance at Fy = 3139 Hz) was § F; (o) = 28 Hz, or
6F,(g0)/Fa = 91073 at strain amplitude g¢ =8 - 1076, .
At first glance, the above estimate based on equation (30) for
the time-averaged perturbation §T'(€0(z)) apparently yields
2.5-3 times larger value of 1.3 us. However, in fact the delay
displayed at the oscilloscope record is somewhat different

" than the estimate based on equations (30) The digital oscil-

loscope does not average the magnitudes of the individual

_ pulse delays 6T, as is supposed in equation (30), but accu-

mulates the pulses which has different delays and different
magnitudes of the nonlinear attenuation. Indeed, since the
time of pulse propagation forth and back was equal to 1/2
period of the pump wave, the distribution dc(go(z)) (av-
eraged over the carrier period) was “breathing” during the
pulse propagation, and also randomly varied between differ-
ent pulses, because the pump-frequency was not synchro-
nized with the pulse-repetition frequency. The pulses, which
were less attenuated, simultaneously had smaller delays and
vice versa. Therefore, both the resultant amplitude and the
delay of the accumulated pulse were mainly determined by
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the pulses with larger émplitudcs and smaller delays. The
* 3 times difference in the amplitudes between the individual
pulses readily accounts for the apparent 2.5-3 times discrep-
ancy between the estimate (30) and the smaller experimental
= . . A3N
"averaged"” delay displayed in Figure 5.

Figure 6 displays with 50 times smaller resolution éxam-

ples of the single-shot records of the emitted and the received

probe pulses. Comparison of the pulse amplitudes without the .
pump wave (Figure 6a) and the nonlinearly attenuated pulse

(Figure 6b) illustrates that attenuation of some pulses was
significantly larger than the averaged value of 2.5 times; and
even for a given pulse different parts of its envelope exhib-
ited significantly different attenuation, since the pump-wave
phase changed significantly within the pulse duration. The

'difference in the attenuation either between different pulses

or even between the parts of the same pulse was more than

3 times, which reduced several times the apparent "aver- .

“age” delay in comparison with the "truc” averaging of the

individual delays in equation (30). Therefore, actually the

magnitudes of the experimentally observed probe pulse shift
and the resonance-shift for the pump wave agree well with
the theoretical prediction based on the averaged nonlinear
variation in the Young modulus. - :

Now let us compare the value of the expected and the ex-
perimentally observed attenuation complementary to such
a variation in the elastic modulus. According to the ex-
amples of the calculations presented in Figure 4(a) for the

' Young wave, the corresponding change in the averaged decre- -

ment (both for the pump and for the weaker probe waves)
should be of the same magnitude. In case of about 1% shift
~of the resonance frequency 8F,(g0)/Fy the complemen-
tary averaged increase in the decrement 86(eo) ~ dc/c =
(27 /3)6F,/Fn = 2-1072 ' ' :
For simplicity, first we neglect- the inhomogeneous distri-
bution of the pump wave amplitude along the rod. Then the
increase in the decrement 88(go) = 2 - 102 together with
the non-dimensional propagation length 2L/ =~ 33 yield
the decrease in the probe wave amplitude by the factor of

| &(eo = 0)‘/€(eo) ~ exp [60(50)2L/A] ~2. (31)

This simplified estimate agree fairly well with both our ob-
servations and typical amplitude variations reported in exper-

iments [25-27). For more detailed comparison the method of -

the averaging must be considered more attentively like in the
above case. Namely, expressions (17)~(22) were obtained for
the time-averaged local magnitude of the decrement in the
material §8(eo) = (66). However, when the attenuation in
the experiment is estimated by measuring the accumulated
decrease in the amplitudes of the pulses, actually the factor
exp[f 86dxz /)] rather than &8 is averaged for a number of
different pulses, and along the rod length for each pulse. In
the discussed experiment the argument @ = [ §8dz/\ of
the exponent (31) varied strongly for different pulses, from
magnitudes much less than unity up to several units. There-
fore, the averaged factor {exp[[ 66dz/]]) in such a case
is noticeably greater than exp[([ d6dz /)] because of the
influence of the rapid exponential function on the result of

Figure 6. Examples of singe shot records of the emitted pulse (the -
left part of the records) and the pulse propagated twice along the
rod (the right part of the records). (a) - the record in the absence of
the pump wave showing the reference form of the propagated pulse;
(b) - the nonlinearity-attenuated probe pulse at the same pump level
as for the time-averaged record preseated in Figure 5 displaying the
central fragment of the pulse. The non-uniform attenuation within -
the pulse duration is clearly seen in the record (b): the leading half
of the pulse is attenuated down to the noise level, whereas the rear
part of the pulse is only slightly attenuated.

'thc'avcraging. For example, the difference a; = 0.1 and

€2 = 1.3 between the pulses yields for the averaged value
(a) the attenuation factor exp[{a)] = 2.0, whereas the aver-
aging of the whole attenuation factor yields noticeably larger
value (exp[a]) ~ 2.4. Thus, accumulation of the randomly

“attenuated pulses results in the apparently stronger attenua-

tion and apparently smaller delay as it was elucidated above.
Therefore, the experimental ratio between the nonlinear at-
tenuation/delay of the probe pulse is in a good agreement
with the prediction based on the suggested mechanism,

For the completeness of the above experiment discussion,
we may ‘add that the non-local scattering mechanism [41]
of the weak/strong wave interaction is unlikely to account
for the observed 2—-3 times average attenuation of the probe
signal and even stronger attenuation at certain single shots.
A simple estimate of the magnitude of scattering expected
for the experimental magnitude of the nonlinear variation
in the sound velocity dc/c ~ 10~2 shows that in order
to change the probe-wave amplitude 2-3 times, there must
be synchronous accumulation of 200-300 individual acts of

N
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scattering. Since the interaction length in our experiment was
about 30 Iengths of the probe wave and only 1/2 wave length
of the pump wave, these conditions were not fulfilled, though
in other cases the scattering mechanism may significantly
affect results of wave interactions and should be taken into
account.

Summarizing the performed estimates, we may conclude
that the proposed mechanism of the amplitude-dependent at-
tenuation suggests a plausible explanation for the effect of

strong attenuation of weak pulses under the action of a strong

_pump excitation, which could not be attributed to hystereti-
cal losses. These effects illustrate that at certain conditions
the microstructure-induced amplitude-dependent attenuation
can be much more pronounced compared to the comple-
mentary time-delay variations and similar nonlinear-elastic
effects. It is important to note that this difference becomes
stronger at larger propagation distances. Indeed, the time
delay (of phasé shift) accumulates linearly proportional to
the propagation distance, whereas the wave attenuation (of

any origin) is exponentially proportional to the distance L/)\

(see equation 31). Therefore, at large distances L/\ < 1, the
_nonlinearity-produced variation in the wave amplitude can be
significantly larger compared to the variation in the propa-
gation time. Apparently the material properties in such cases
may produce at first glance an impression of “purely dissipa-
tive nonlinearity” like in the above example and experiments
[27-29]. Here we restrict ourselves to the performed above
estimates relevant to the pulse-resonant interactions. More
~ detailed comparison requires correspondingly more detailed
modelling of properties of both the individual defects and the
density of distribution over the parameters of the defects.
A few more general, but important conclusions allowing
for experimental verification may be additionally inferred
from the close similarity of properties of the linear and the
nonlinear microstructure-induced perturbations in the elas-
ticity and the decrements in microinhomogeneous solids. In
particular, since equations (8)- (10) and (21), (22) indicate
that nonlinear variations both in the elastic moduli and in the
decrements are determined mainly by the amplitude depen-
dence of the effective defects density N = N(gp), then, con-

sequently, the amplitude dependencies of 66(eg) and dc(eo) .

must be similar both for static of for period-averaged vari-
* ations (see also the discussion of the estimates presented in
Figure 4). Available experimental data, indeed, satisfactory
. agree with this conclusion. For example, dependencies of
the attenuation and the modulus on static pressure [24] ex-
hibit such a close functional resemblance and the variation
‘magnitudes agree well with the model predictions.

In case of wave self-action, resonant experiments [7] and
" other similar measurements by Nazarov [42] or an inde-
pendent example presented in [21, p.169] and obtained by
Winkler [43] also exhibit the similar amplitude behavior of
the clasticity and the attenuation. However, unlike the case
of the static pressure effect, the data on self-action of os-
cillatory excitations are not transparent enough for rigor-
ous comparison with the discussed model, because in this
case both the non-hysteretical and conventional hysteretical
amplitude-dependent dissipation may occur simultaneosly.

Let us also address briefly the expected dependence of
the nonlinear parameter variations on the pump excitation
frequency. Generally speaking, the nonlinear change in the
effective defect density AN(go) can depend not-only on
the strain amplitude o, but also on amplitude wey of the
strain rate, because the defects evidently exhibit relaxation
properties (see equations (3), (4) in which the corresponding
viscous-like terms are introduced). That is the dispersion of
the nonlinear variations, which is of the same origin as for the
linear elasticity and attenuation, must occur in the material.
Rigorous prediction of frequency dependence AN (wp,€5)
requires consideration of concrete nonlinear models of defect
dynamics under oscillatory stress action and in the considered
case it may be analyzed like in 1D paper [53]. Qualitatively

it may be argued that the dispersion of the nonlinearity in

2 material with a wide relaxation spectrum of the defects
must be Weak due to the smoothing of the relaxation peaks
over the relaxation spectrum much like in the linear case,

-in which the weak logarithmic dispersion of the sound ve-

locity occurs [38-40]. More careful analysis of this question
is beyond the scope of the present paper. However, in this
context we may mention experiments {54] in which at the
variation in the pump frequency wp by the order of magni- ,
tude, the nonlinearity-induced losses of the high-frequency
probe wave varied only within 10-50 percents. Using the
same analogy with the linear case, weak dependence of the

- nonlinear decrement on the probe wave frequency may be
also predicted. The corresponding effect observation at 60-

times lower signal frequency than in the above pulse-resonant

, experiment is described below.

‘This expcnmcmal demonstration of thc nonlinearity-
mduccd‘ losses of the non-hysteretical origin has the fol-
lowing goals. The first goal is to give an example of the
nonlinear attenuation of a probe wave, whose frequency & is
significantly (3 times) lower than that (w ) of the pump-wave,
unlike the previous examples in which & ~ (60...70)wg.
Thus the elimination of the hysteretical Josses for the weak
low-frequency wave duc to a strong higher-frequency ac-
tion is more closc to the classical method of dithering
{49, 50] than in the above discussed pulse-resonant case
of & > we. The second goal is to experimentally demon-
strate the effect of the nonlincar dissipation in a more pure
form. Namely, the case will be demonstrated, in which the
probe signal attenuation is proportional to the decrement
variation d8(eo) <« 1, whereas the influence of the com-
plementary variation in the elasticity is reduced down to the
second-order ([dc(eo)/c}? ~ [68(e0)]* < 68(eq)) correc-
tion to the probe-signal amplitude. This difference is achieved
due t6 special choice of parameters of the waves. Note for
comparison that in the discussed above pulse-resonant ex-
periments, both the delay and the attenuation of the probe
pulse were determined by the first-order nonlinear variations
dc(eo)/c ~ d8(eo).

To observe the "pure" effect we excited the pump-
oscillation at the second resonance of the described above
rod-resonator. The probe wave was lower in frequency. At

- first glance it seems convenient to choose the probe wave

frequency away from resonances. However, in a relatively
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high-quality resonator (the Q-factor was about 200 for 5
lower modes of the copper rod), the amplitude of an oscilla-
tion excited out of a resonance practically does not depend
on the losses in the resonator, and is almost entirely deter-
mined by the frequency de-tuning from the resonance. On
the other hand, near a resonance, the oscillation amplitude
is determined by variations both in the resonance frequency
shift and the material decrement, whereas our goal is to single
out these effects. Nevertheless, it is possible to separate the
influence of the nonlinear variation 6%°"¢(eq) in the ma-
terial decrement, and to effectively eliminate the influence
of the complementary variation in the resonance frequency.
This may be achieved if the probe wave frequency is initially
tuned exactly to the resonance maximum F},, and the non-
linear variation § FP*°¢(g) in the resonance frequency for
the probe-signal is small compared to the width AF} % of
the resonance curve:

SFPTOPe(e0) [ F, ~ 6P (g9) < AFI [ F,,. (32)

Indeed, it is well known that due to the zero slope of the
tangent at the resonance maximum, a small shift from the
resonance frequency, d FPP¢(gq) /AFT: < 1, affects the
signal amplitude only in the second order of the frequency
shift magnitude. On the other hand, the variation in the decre-
ment @R (gy) ~ SFPTP¢(gy)/F, influences the reso-
nant signal amplitude in the first order of its magnitude.
However, if the resonance frequency shift further increases
and becomes comparable with the width of the resonance,
JEPTObe(g4) [ Fy ~ 6620 ¢(gg) ~ AFLS: [ F,, then both
complementary variations in the elastic JFP™P¢/F,, and
dissipative §627°P¢ properties influence the probe signal am-
plitude in the same order of magnitude, and the action of
such strong variations cannot be discriminated.

The above arguments show that the use of a moderate
pump-wave amplitude, for which conditions (29) and (32)
are simultancously fulfilled, eliminates for the probe wave
the influence of hysteretical losses together with the influence
of the resonance shift caused by the pump wave. This allows
us to reach the stated goal: to observe the non-hysteretical
amplitude-dependent attenuation of the probe wave in the
desired "pure” form. However, the effect must be inevitably
limited to a small relative variation in the signal amplitude,
as it is elucidated above.

In the experiment, the pump wave was excited at frequency
F1 = 10120 Hz of the second rod-resonance, and the probe
one was tuned to the lowest first resonance at 3378 Hz. Ini-
tial (small-amplitude) quality factors for the first and the
second resonances were Fy /AFT® = Q1 ~ 230 and
Fy JAFY®S = @y ~ 180, correspondingly (the resonance
curve widths were AF7® =~ 14.5 Hzand AF}** = 55 Hz).
For the pump amplitudes ¢ between 1076 and 1075, the
nonlinear frequency shift was still too high 0F} (e9)/F1 =
1072, which was larger than the initial width of the res-
onances Fy% /AF ~ (4... 5)10~3. Therefore, follow-
ing the above conclusions, in order to single out the effect
of the nonlinear attenuation, we used smaller pump levels
(€0 &~ 1...2-10~7), for which the nonlinear correction of
the decrement 66, (¢¢) /61 measured for the pump wave was

@
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Figure 7. A "pure" experimental example of the supression of the
probe wave under the action of the pump wave due to the dissi-
pative nonlinearity of the material. Both the influence of the res-
onance frequency shift due to the elastic nonlinearity and conven-
tional hysteretical losses are negligible due to the appropriate choice
of the pump- and the probe-wave amplitudes. (a) — the spectrum
at the bi-harmonical excitation, the probe signal being tuned to the
l-resonance, and the pump being tuned to the 2-nd resonance at 3-
times higher frequency; (b) — the spectral zoom for the low-frequency
probe wave without the pump (the solid line) and in the presence of
the high-frequency pump (the dashed line).

only about 3-5 percent, and the ratio 0 Fy 2 (g0) /AFTS" was
of the same order of magnitude.

In these conditions, the variation in the probe wave am-
plitude due to the nonlinear variation in the decrement is
proportional to 66, (€9)/6; < 1 (about 4 - 10~2) whereas,
the effect due to the resonance shift gives a negligible higher-
order (O(-1073)) correction. Thus occurrence of the decrease
in the probe wave amplitude at the chosen small enough
pump level is almost entirely due to the nonlinear variation
in the dissipation. The corresponding example of experimen-
tal records is presented in Figure 7. Figure 7a demonstrates
relative level of strain in the probe and in the pump waves
(the difference between the strain rates was 3 times larger
due to the 3 times difference in the frequencies). Therefore,
condition (29) of elimination of hysteretical losses for the
probe wave was well satisfied. The next Figure 7b shows the
decrease in the amplitude of the probe wave of about 4%
(or 0.4dB) when the pump is switched on. This difference
agree well with the magnitude of the resonance-frequency
variation, and is much higher than the measurement inac-
curacy, since due to signal filtration and accumulation the
measurement results were reproducible within 0.02 dB.
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Figure 8. An example of the modulation spectrum obtained in the mi-

croinhomogeneous copper rod (a) and the similar spccln.lm without

signs of modulation obtained at similar conditions in the reference
. homogeneous rod made of glass (b).

~ We stress once again that in the last example the effect
strength was intentionally limited in order to obtain the man-
ifestation of the amplitude-dependent losses in the most pure

form, and to eliminate the influence of the nonlinear shift of

the resonance on the probe wave amplitude. The observed

amplitude decrease, therefore, could not be attributed to hys- -
* teretical losses of the probe signal, since the strain rate in .

the pump wave was high enough to eliminate hysteretical
loops for the weak probe wave. On the other hand, the sug-
gested non-hysteretical mechanism readily accounts for the
phenomenon and fairly well predicts the value of the ratio
between the observed complementary nonlinear variations in

’  the losses 6PT°P¢(g,) and the clasticity 63 2(€0)/F1 2.

Note finally, that the considered method of the effect ob-
servation has only an academic interest, since it requires

too many experimental precautions. As another interesting
and practically more convenient possibility to observe the

nonlinearity-produced changes in the probe signal, the usage
of a modulated pump wave can be suggested. In this case,

- _due to the dependence of the material propertics on the am-

plitude of the modulated the pump wave, the probe wave
should also acquire a modulation. To demonstrate the effect,
we used the same frequencies and amplitudes of the probe
and the pump waves as in Figure 7a, but unlike the previous
case the pump wave had sinusoidal amplitude modulation
- at low frequency 4 Hz with 100% modulation depth. This
caused the corresponding slow modulation of the material

«

properties and resulted in the modulation of the probe wave.
An example of its modulation spectrum is given in Figure 8a.
The modulation side-lobes of the probe wave are clearly seen
even though we intentionally used a rather weak pump level,

which proves the high sensitivity of the effect. The level of
the sidelobes is about —28 = 1dB (that is about 4% of the
central line amplitude), and agree well with the magnitude
of the static decrease in the probe wave amplitude shown
in Figure 7b. For comparison, another spectrum obtained
for a reference rod made of glass (a homogeneous material
with weak atomic nonlinearity) is presented in Figure 8b
and displays no sign of such a modulation. Note, that simi-
lar nonlinear-modulation effects were previously observed in
defect-containing solid samples using directly low frequency
pump-vibrations (at frequency from several Hertz to several
tens of Hertz) [55~57]. However, often the excitation of a
relatively intensive vibration at such a low frequency is a

. difficult technical problem, so the use of the modulated high

frequency pump wave can be more advantageous in diag-
nostical applications. The effect of the amplitude-dependent
attenuation does not require spatial synchronism and can be
observed both for co-propagating and counter-propagating
waves. When the interaction length is large enough, the re-
sultant amplitude modulation can be rather strong cven at
small variation in the decrement, which seems to be very
promising for practical nonlinear methods of acoustic and
seismic diagnostics.

7. Conclusion

“The consideration of nonlinear effects in microinhomoge-

neous solids presented in this paper demonstrates that, al-
though the phenomena originate from the same microstruc-
tural material features, in general, the character of the non-

* linear effects can be formed by several different mechanisms

of the nonlinearity manifestation. In this paper we focused
on the nonlinear (amplitude-dependent) variation in local at-
tenuation in rmcromhomogcncous materials, and suggested

" a new mechanism of this phenomenon. Unlike other models

of the amplitude-dependent attenuation this mcchamsm re-
quires neither conventional hysteretical losses, nor frictional
(non-viscous) dissipation at the defects. The key points of this
mechanism are (i) conventional viscous-like (e.g. thermal)
losses at the defects and (ii) nonlinearity of defects’ elastic
parameters. Combined influence of these two factors results
in occurrence of macroscopic amplitude-dependent attenu-
ation in the material. In particular, hysteretical nonlinearity
of the defects may also manifest itself via this mechanism in
addition to the conventional hysteretical losses described by
the area of the hysteresis loop.

At certain conditions and for pameular effects, one of the
mechanisms can dominate whereas in other cases contribu-
tions of different mechanisms could be comparable resulting

" in a rather complex character of functional dependencies of

the effects. For example, at self-action of intensive waves, the
contributions of conventional hysteretical and the suggested
non-hysteretical amplitude-dependent losses can be compa-
rable. In other cases, for example, in nonlinear variation of
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attenuation of a weak probe wave under the action of another

~ stronger wave, or in case of influence of quasistatic loading,

the proposed new mechanism can dominate, N
The predictions of the proposed mechanism are in a fair
agreement with the own experiments and published ex-
perimantal data. In particular, an explanation is proposed
for experimental observations of strong dissipative non-
linearity [27-29], which could not be explained by hys-

teretical losses and required to introduce phenomenological -

nonlinear-dissipative terms into equation of state of microin-
homogeneous solids. ‘

Generically, the results of this paper are based on the same
approach which in a series of papers (c.g. [34—40, 53]) was
developed to account for a wide variety of acoustical features

of microinhomogencous solids: near-constant quality factor .

and the complementary dispersion, anomalous high level of
elastic nonlinearity, dispersion of nonlinear parameters and,
in the present paper, the amplitude-dependent attenuation.
The modeling of the material properties in this approach may
be characterized as micromechanical description, in which
the indivi;lual defects were described by phenomenologi-
cal parame'térs (elastic moduli, effective viscous parameters,

nonlinearity function). This combination of consistent mi--

cromechanical analysis and phenomenology in the defect

| _description is a practically convenient way allowing for im-
. portant predictions even without detailed physical models of

the defects. If necessary, however, concrete defect models
may be used to infer defect’s parameters, which may be sub-

stituted in the suggested micromechanical material models, -

thus transforming them into consequent physical modeling
of the material starting from the microdefect level.

The effects inferred from the suggested mechanism of
the elasto-dissipative nonlincarity, therefore, agree well with
the other models [34-40, 53] which consistently account for
the wide variety of experimental data on the microstructure-
induced linear and nonlinear elastic/dissipative properties
of microinhomogeneous solids. The predicted amplitude-

. dependent dissipative effects are rather sensitive to the

changes of material structure, which provides an additional
argument in favor of high potential of exploitation of the
nonlinear acoustic and seismic effects in diagnostical appli-
cations. :
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