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Summary

A nonlinear equation of state and the corresponding wave equation are derived in the framework of a rheological
model suggested for elastic media containing defects with relaxation. The defects in the model are considered
as highly compliant visco-elastic inclusions that exhibit a nonlinear stress-strain dependence. For real solids,
these inclusions may model, for example, cracks, intergrain contacts and other similar defects. The proposed
model thus can be applied to a wide class of microinhomogeneous materials (Earth rocks, engineering materials,
damaged metals, etc.), which are also called “mesoscopic” solids. The derived equations consistently comprise
the following material properties connected to the presence of the defects: (i) the microstructure-induced ab-
sorption (including near-constant @-factor), (ii) the complementary dispersion of sound velocity, (iii) increased
magnitude of the “mesoscopic” elastic nonlinearity and (iv) frequency dependence of the nonlinearity. To il-
lustrate the aforementioned manifestations of the material microstructure, a few basic nonlinear effects (second
and difference-frequency harmonics generation, and self-demodulation of high-frequency pulses) are analyzed
in the framework of the derived equations. Main distinctions of the effects compared to the case of “classical”
lattice (atomic) nonlinearity of homogeneous solids are pointed out.

PACS no. 43.25.Dc, 43.25.Ed, 43.25.Lj, 43.35.Cg, 91.60.L;j

1. Introduction

The wide class of the so-called microinhomogeneous
[1, 2, 3] (alternatively named “mesoscopic” [4]) media is
a subject of intensive studies in acoustics and seismics for
the last decades. This class comprises a large number of
solids which contain, for example, cracks, inter-grain con-
tacts, dislocations and similar defects whose characteris-
tic size is larger than the atomic scale and small compared
to the acoustic wave length. It is well known that solids
with such microstructure (for example, almost all Earth
rocks) exhibit important acoustic features that signifi-
cantly differentiate them from monocrystals and homoge-
neous amorphous solids [1, 2, 3, 4, 5, 6]. For example, for
quite a long time it was known that many rocks in a wide
frequency band exhibit near-constant ()-factor together
with logarithmic dispersion of elastic wave velocity [5, 6].
In recent years, a large amount of data was obtained which
indicate that the same class of microinhomogeneous me-
dia also exhibits very pronounced nonlinear elastic prop-
erties in contrast to weakly nonlinear homogeneous solids
with lattice nonlinearity [2, 3, 4, 7, 8, 9]. This differ-
ence in nonlinear properties is not only qualitative, but in
many cases quantitative. In particular, there is evidence
that nonlinearity in microinhomogeneous solids may ex-
hibit pronounced frequency dependence [10, 11, 12]. To
adequately comprise the onset of these properties, the
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equation of state of such media, often being non-analytical
[13], has to meet the type and amount of the defects in the
material.

The aforementioned linear and nonlinear manifestations
of the microstructure in most pertinent publications, until
recently were studied independently. In theory, the rele-
vant models were mostly developed at the phenomeno-
logical level [14, 15, 16, 17, 18, 19, 20, 21], which did
not elucidate the connection of real structural features of
the material to its acoustical linear and nonlinear proper-
ties. In the recent series of papers [22, 23, 24, 25, 26],
the present authors considered the onset of linear and non-
linear acoustic properties typical of microinhomogeneous
media on the basis of a proposed material model in the
form of a chain of elastic elements with a small amount of
highly compliant visco- and nonlinear-elastic inclusions
(defects). Due to the high relative compliance of the inclu-
sions, their strain and the stain-rate are strongly increased
compared to the strain and the strain-rate in the surround-
ing relatively rigid material. As a result, both the dissi-
pation of elastic energy and the deviation from the linear
Hooke’s law are localized at these highly compliant in-
clusions. Such localization makes it possible to consider
the main part of the material as ideally elastic and linear,
whereas the relaxation (that is dissipative and dispersive
properties) and the nonlinearity can be taken into account
only at the highly compliant inclusions. This approach
was recently further developed in papers [27, 28] to de-
rive a dynamic nonlinear equation of state for such media,
which takes into account both the structure-induced linear
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dissipation and dispersion, and the frequency dependence
of the material nonlinear elasticity. The latter property is
shown to be an inherent feature of microinhomogeneous
solids [27, 28], which is closely related to the frequency
dependence of linear dissipation (the problem of physical
origin of near-constant ()-factor) and the complementary
dispersion of the sound velocity.

In the present paper, on the basis of the dynamic equa-
tion of state obtained in [27, 28] for microinhomogeneous
solids, a nonlinear wave equation is obtained and used
for studying some basic nonlinear effects. The main fea-
tures of the derived equation are pointed out in compari-
son with conventional nonlinear wave equations for acous-
tic waves in homogeneous media. It is shown that the in-
herent dispersion of nonlinearity may essentially impact
the nonlinear transformation of elastic waves in such me-
dia. For the effective nonlinear parameters, their meaning
and frequency behavior essentially depend on the particu-
lar type of nonlinear transformation (for example, whether
up- or down-conversion in frequency is considered). In
the next sections, first, the wave equation will be derived
for a rather general type of defect’s nonlinearity, then the
mentioned features will be discussed in detail consider-
ing a few basic nonlinear effects for the instructive case of
quadratic-in-strain nonlinearity.

2. Derivation of the nonlinear wave
equation

The rheological model of the medium mentioned in the
Introduction is shown in Figure 1 and consists of an in-
homogeneous chain of masses, linear elastic and nonlin-
ear visco-elastic elements. In this model, homogeneous
parts of the chain consisting of relatively rigid elements
with the stiffness coefficient x correspond to the regions of
defect-free ideal-elastic medium. Nonlinear visco-elastic
elements (whose linear stiffness k; < k) correspond to
the soft defects- inclusions. The equations of state of the
linear-elastic elements and the visco-elastic nonlinear in-
clusions, respectively, have the forms:

o = Eeo, (1
o = (E[e1 — F(e1)] + ¢é1, 2)

where £ = kl is the elastic modulus; £¢ and ¢ are the
strains of the rigid elements and soft defects respectively;
€1 = dey /dt is the rate of the strain; g is the viscous co-
efficient; ( is the non-dimensional (relative) coefficient of
the defects’ compliance (( < 1); F'(¢) is a small non-
linear correction to the constitutive equation of the soft
element (|F'(¢1)| < |e1]). Note that this function may be
non-analytical [13]. If the linear (per unit length of the
chain) concentration of the defects equals v, the strain ¢
of the medium is related to partial strains £ and £, via the
expression:

= (1 —v)eg + vey. 3

Figure 1. Rheological model of a microinhomogeneous medium.

Using the method of successive approximations, one may
obtain from equations (1)—(3) the following equation of
state of the medium [27, 28]:

(o) = % ((1 —v)o + v /_t g(tl)e—CQ(t—tl)dt1>

t
+1/QC/ e ¢Qt=t)

Q M
F (E / a(tz)e‘m(“‘”)dtz)dtl, &

where ) = E/g, so that Q( is the relaxation frequency of
the defect.

This equation is valid in the whole range of the defect
concentration (0 < v < 1). At the limit » = 0 we get an
ideally elastic linear medium, and at » = 1, a nonlinear
elastic medium with dissipation typical for liquids, gases
and homogeneous solids.

In the case of small concentration of the defects, v < 1,
equation(4) may be resolved to the “canonical” form o =

o(e):
(s - I/Q/

—VQC/ e~Git—tr)

ty
- F<Q/ 6(t2)e<iQ(t1t2)dt2> dt1> . (5)

Note that equations (4), (5) are written for the case of
identical defects. The concentration v of real (not identi-
cal) defects should be characterized by a distribution func-
tion v = v((, ), and contributions from different defects
should be summed over this distribution. For convenience,
let us introduce the following notation for the relaxation
operator and for the integral operators corresponding to
the summation over defect parameters:

B Q/+<>o
/ / V(Q, ¢) dQdC, %
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I = //[ L Jv(9,0)¢dRdC, )

where H (t) is the Heaviside step-function. Note that be-
low, for convenience, we shall mostly limit the depen-
dence of the defect distribution to one parameter, the com-
pliance, corresponding to the choice v = v({). When nec-
essary, the complete form of the operators in equations (7),
(8), with integration over both variables ¢ and {2 may be
readily retained. In terms of the introduced notation, the
equation of state in equation (5) for the case of different
defects may be rewritten in the following compact form:

o(e) = B{e - 1[R(e)] - J[R(FIRE)] . ©

Substituting equation (9) into equation of motion (pU ¢ =
0z, € = U, where p is density) we get the following wave
equation for displacement U (x, t):

U = C*Upe = ~C*{I[R(Us.)]
+J[R(E[RWD]}, (10)

where C' = /E/p is the wave velocity in the defect-less
chain and corresponds to the high-frequency limit of the
wave in the chain with defects. Note that in the derivation
of equation (10), “geometrical” nonlinearity is neglected
in comparison with the material nonlinearity, that is the
contribution of the nonlinearity of equation of state, equa-
tion (9), connected to the presence of the defects. In this
approximation, p =const., £ = U,.

Further, using the method of slowly varying profile, in
terms of the retarded time 7 = ¢t — z/C, equation (10) is
transformed into the equation for the slowly varying ve-
locity V = U

L
2C

+%J{R[FT(—R(V)/C)]}:0. (11)

Vo + s=I[R(V;)]

Equations (10), (11) obtained for the microinhomoge-
neous medium with relaxation thus take into account lin-
ear attenuation and dispersion, the structure-induced non-
linearity and its frequency dependence due to relaxation at
the defects. Though the parameters of the defects were in-
troduced in the equation of state (2) in a phenomenological
manner, the consequent derivation of the wave equation is
consistently straightforward and does not imply additional
phenomenological assumptions. In particular, such a rig-
orous derivation shows that in the nonlinear term, relax-
ation at the defects manifests itself in a two-fold manner.
First, the relaxation influences the linear response of the
medium, which is the argument of the nonlinearity func-
tion F(..), this statement being universal for any nonlin-
ear process and arbitrary type of function F(..). Second,
together with the argument of the nonlinearity function,
relaxation affects the “output” of the nonlinearity (see the
relaxation operator outside the nonlinear function F'(..)).

42

The resultant effect of relaxation on the nonlinear response
thus essentially depends on the particular type of nonlin-
ear transformation (output of the nonlinearity function).
As it is shown below, a significant difference exists be-
tween the processes with down- or up-conversion in the
wave frequency, so that the resultant frequency depen-
dencies of nonlinearity are essentially different, and the
material response for different processes cannot be char-
acterized by the same nonlinear parameter(s) in contrast
to homogeneous media without relaxation. Therefore, for
microinhomogeneous media, the derived evolution equa-
tion (11) consistently takes into account the effect of re-
laxation at the defects on material linear and nonlinear
properties, thus being a generalization of the KdV-Burgers
equation conventionally used in nonlinear acoustics of ho-
mogeneous media [29].

For the particular case of quadratic nonlinearity of the
defects (F(¢) = v&?), equation (11) yields:

1
Vo + 551 [R(V)]

- %J{R[R(V)R(VT)]} —0. (12)
When relaxation in the nonlinear term in equation (12)
is neglected and the inclusions are identical, the equation
reduces to the earlier considered [29] form with a con-
stant quadratic nonlinear parameter and a linear relaxation
term. The derived equations (10)—(12) in particular, allow
for description of wave propagation in media with near-
constant ()-factor and the corresponding logarithmic dis-
persion (due to the relaxation-band spectrum), which was
discussed in detail in paper [26] in the linear approxi-
mation. In the next sections, we shall consider examples
of manifestations of the nonlinear-dispersive properties
of such media. Namely, second and difference-frequency
harmonic generation and self-demodulation of pulses
with a high frequency carrier in media with frequency-
dependent nonlinearity will be analyzed.

3. Second harmonic generation

Consider the nonlinear process of propagation of elastic
harmonic waves in the framework of the evolution equa-
tion (12) using the perturbation approach:

V(QZ,T) :%(waT)+V2(va)' (13)

Here Vi(xz,7) corresponds to the primary wave, and
Va(z,7) describes the nonlinearity-induced correction,
[Va(z, )| < |Vi(z,7)|. In the first approximation, equa-
tions (12), (13) yield the next equation for the primary
wave:

1
Vie + 551 [R(Vir)] = 0. (14)
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Substituting in equation (14) the solution in the form
Vi(z,7) = $ A1 (z)e'“!+c.c., we obtain for the amplitude
A of the fundamental harmonic the equation:

Ay +iK1 A =0, s)

where dispersion correction K is the difference between
the current wave number k& = k(w) corresponding to fre-
quency w, and the value w/C' corresponding to the high-
frequency limit C' of the wave velocity:

1 w)
K, =kw) - =—]1 . 16
1= kW) —w/C= 55 <iw+§Q> (16)
In the full form via the distribution v = v(() over compli-
ance of the defects, equation (16) has the form:

w1 =5 [ [oromr
w0

—im] v(¢)d¢. (17)

Note that in case of a wide and smooth distribution v =
v(¢), equation (17) yields a wide frequency range in
which the medium exhibits near-constant () and a weak
logarithmic dispersion [25, 26].

For boundary condition

V(z =0,t) = (4o/2) exp(iwt) + c.c.,

the first-order equation (15) has a solution A;(z) =
Age™ K12 Tn the second order approximation, equation
(12) yields an inhomogeneous equation for the nonlinear
correction Va(z, t):

1 v
—_I[R(Va, :—J{RRV R(Vi, } 18
A solution of equation (18) for the second harmonic may
be found in the form V (z, 7) = A5 (z)e?“™ +c.c.. Then
equation (18) yields the equation for the complex ampli-
tude As(z):

i 2w
o 561 (G o)

Voo +

_ A
= 22

iw(? oK
<(§Q T 2i0) (CO + iw)2>e 9

Integrating equation (19) we get an expression for A »(x):
vA3 iw?
A = —
2(2) = 5627 ( (€O + 2iw)(CQ + iw)?

1 _ ei(K272K1)z .

where Ky = k(2w) — 2w/C is the dispersion correc-
tion to the wave number of the second harmonic, Ko =
ITi2w/ ((Q + 2iw)]/(2C), or in the full form:

w= 2 [ [eramr

2w/

—1m v(¢)dC. 21)

Using equations (16) and (21), we find
Re{K> — 2K, }/Sm{K,} < . (22)

Here 1/23m{ K} is the effective interaction length, and
Re{K> — 2K} is the dispersion mismatch between the
wave numbers of the interacting fundamental and sec-
ond harmonics. Therefore, condition (22) means that the
phase-mismatch between the fundamental and second
harmonics within the effective interaction length L =~
1/29m{K;} is not important, so equation (20) may be
simplified as follows:

iw?
CQ+2iw) (N +iw)?

A2
Ao () %—;—CSJQ

>xe—iK2”€ (23)
Note that operator J[..] in equation (23) displays the fre-
quency dependence of the elastic nonlinearity for the pro-
cess of the second harmonic generation, whereas the spa-
tial factor z exp(—iKsx) in (23) is the same as in a “com-
mon” medium without dispersion of its nonlinear prop-
erties. The structure of the denominator in the argument
of operator J[..] in equation (20), (23) shows the above-
mentioned two-fold influence of the defects’ relaxation
both at the fundamental frequency w and at the second
harmonic 2w. Let us discuss the frequency-dependence of
the effective nonlinear parameter starting from the case of
identical defects with compliance parameter ¢ and density
v, and at small distance (exp(—SmKx) &~ 1). In this
case, for the amplitude of the second harmonic A 5 and its
phase, equation (23) yields:

AL wz exp(—SmK,x)
N 50 e i arar Y
o §R8A2
(2 = arctan (meb)
_ 2(w/¢V)[(w/¢)? — 2]
= arctan ( 5(w/CO) — 1 > (25)

In equation (24) for the second harmonic amplitude, a
frequency-dependent non-dimensional factor may be sin-
gled out:

(26)

1
N i @

that reduces to unity at w(({2 < 1, when relaxation
does not affect the nonlinear source in the right-hand side
of equation (18). Factor Ny < 1 characterizes the ra-
tio of the magnitude of the effective nonlinear parame-
ter in the medium with relaxation to the magnitude v/(?2
of the frequency-independent nonlinear parameter in the
absence of relaxation. Note that due to the high compli-
ance of the defects (( < 1), the non-relaxational non-
linear parameter /(> of the microinhomogeneous ma-
terial may be much greater than the nonlinear parameter
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Figure 2. Frequency dependencies of the normalised parameter
of nonlinearity N> (curve 1, left Y-axis) and phase @2 (curve 2,
right Y-axis) of the second harmonic in a medium with identical
defects (¢ = 1073).
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Figure 3. Non-monotonous frequency dependence of the nor-
malised parameter of nonlinearity N> for the second harmonic
generation in a medium with two types of the defects ((1 =
1073, CI/CZ = 20).

v of the defects [22, 23, 24]. In the structure of the re-
laxed, frequency-dependent parameter N», the presence
of the factor 1/1/1 + (2w /()2 corresponds to the relax-
ational response of the medium at the nonlinearly gener-
ated second harmonic, whereas the factor 1/[1+ (w/¢2)?]
is connected to the squared relaxation response at the fun-
damental frequency. The frequency dependencies of N,
and @5 are shown in Figure 2. The curves exhibit a rather
rapid decrease of the parameter No ~ w3, when the
frequency w exceeds the defect relaxation frequency (2,
and a rapid phase variation by 7 radians around frequency
w = (Q/V5. Such a phase behavior may lead to an-
other interesting effect when defects with different relax-
ation frequencies exist in the material. Indeed, the sec-
ond harmonic components produced by different defects
may superimpose either in-phase (constructively) at one
frequency or out of phase (destructively) at another fre-
quency, thus resulting in a non-monotonous frequency de-
pendence of parameter N». An example of such a depen-
dence is given in Figure 3 for the case of two types of de-
fects with equal concentrations and different compliance
parameters related as (»/(; = 20.

For natural media (e.g., rocks), a wide distribution of
defect parameters is more realistic than a narrow or bi-
modal distribution. If such a wide distribution is approxi-

44

Figure 4. Frequency dependencies of the normalised parameter
of nonlinearity N> (curve 1, left Y-axis) and phase ¢» (curve 2,
right Y-axis) of the second harmonic in a medium with defects
characterised by a wide distribution in the elasticity parameter
(the distribution boundaries are ¢ = 1072, b = 107").

mated, for example, by a wide II-shape function

¢ €la,b], and
(& la,b], a<b, 27

equation (23) for the complex amplitude A 5 of the second
harmonic takes the following form:

v(() =vy at
v(()=0 at

ywAp
2C?

Ao(z) =

{ % [arctan(CQ/Zw)

- arctan((Q/Qw)]

*W}F

e e &

W/CQ < e K2
+<[1+<w/c9>2l}‘gza] co

In this expression, the frequency behavior of the material
nonlinearity is described by the term in the big square
brackets. The frequency dependence of the correspond-
ing normalized nonlinear parameter Ny and phase @2 =
arctan(fReA,/ImAs) are shown in Figure 4. In the fig-
ure, at low frequency w < af2, the parameter N, = 1; then
in the band a2 < w < bS) the nonlinearity parameter de-
creases as No ~ 1/w, and at higher frequencies w > b2,
the parameter N» ~ 1/w? as in the discussed above case
of identical defects at w > (2.

4. Generation of the difference-frequency
wave

Let us consider now the generation of the difference-
frequency wave for bi-harmonic excitation of the medium
at frequencies w; and w» and initial amplitudes A; and
As. In this case, the solution of equation (18) is found
in the form Vy(z,7) = £ A4(z) exp(iwgT) + c.c., where
wq = wy — ws. Then the solution of equation (18) for zero
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boundary condition A 4(x = 0) = 0 in the case of identi-
cal defects has the following form:

A Asw
Ay(x) = 2L—%z;§—ﬁ
J{ i }
(CQ+ i) (¢ + i) (C — i)
_ pl(Ki+Kos—K)x .
gl o K, (29)
Ko+ Ky — K,

where the dispersion corrections to the wavenumbers
of the primary waves, K1 and K>, and the difference-
frequency wave, K4, are given by expressions similar
to equations (16), (17) for K (w), in which frequency w
should be substituted for the frequency w; » and wy, re-
spectively. Unlike the case of second harmonic genera-
tion, the phase mismatch between the interacting primary
waves and the secondary difference frequency wave may
be non-negligible. In the case of identical defects, at strong
enough separation in the frequency domain (wy < (£,
wi2 > (Q) the phase mismatch Re(Ky + Ko — K1)z,
generally speaking, may significantly exceed 7 within the
characteristic interaction length 1/3m (2K »). However,
at small distances (when |K; — Ky — K|z < 1) the fac-
tor in curly brackets in equation (29) may be simplified so
that the amplitude and phase of the difference frequency
wave are given by the expressions:

voywg AL Asx
2022

(1 (@2/C0?) (1+ (wa/C?) G

( §R€Ad >
pq = arctan

%mAd

(wa/CN)[2 4+ wiw2 /(¢N)?]
T+ (s — w2)/(CO)? )‘ GV

[Aa(o)| ~ [(1+ (@i/¢c)?)

arctan (

As in equation (24) for the second harmonic the ampli-
tude, frequency-dependence of the denominator in equa-
tion (30) is determined by the operator .J[..] in equation
(29) and characterizes the frequency behavior of the ef-
fective nonlinearity in the microinhomogeneous material
for the case of the difference-frequency signal generation.
Note that in the non-relaxed limit (€2 — o0), the nonlinear
parameter in equation (30) is the same as the non-relaxed
parameter vy/(? for the second harmonic (see the dis-
cussion of equation 24). However, frequency-dependent
parameters for the second and difference-frequency har-
monics essentially differ. By analogy with equation (26),
it is convenient to introduce the corresponding normal-
ized nonlinear coefficient for the difference-frequency har-
monic:

Na = [(1+ (@1/C0)2) (1 + (w2/C)?)

1+ @acp)]

(32)

ol 1
IgN,
24 2
-4
. l9(@£)
5 4 -3 -2 -1 0

Figure 5. The magnitude of the normalised nonlinearity param-
eter N for the difference-frequency harmonic at fixed wqg =
107°Q plotted against high frequency w = wy,». Curve 1 is for
the medium with identical defects (( = 102); curve 2 is for
the medium with defects characterised by a distribution in the
elasticity parameter ¢ (the distribution boundaries a = 107,
b=10"").

At low frequencies wy, wy, wyg <K (€2, parameter Ny — 1,
which corresponds to the medium without relaxation. In
the high-frequency limit (w1, w2, wg > (£2), the normal-
ized parameter Ny decreases as Ny o< (wiwowg) t. In
the case of close primary frequencies w; & ws = w
and for wy < (f), the magnitude N, is shown in Fig-
ure 5 (curve 1) as a function of frequency w. Concern-
ing the phase ¢4, note that in contrast to abrupt varia-
tions for the second harmonic (see equation 25), equa-
tion (31) indicates that the influence of relaxation causes
only a smooth variation in the phase ¢4 from zero value
in the quasistatic (wy,ws,wq < () limit up to 7/2 in
the high-frequency limit (w1, w2, wq > (). Indeed, the
phase of the difference-frequency wave is determined by
the difference in phases of the primary waves, whereas the
phase of the sum-harmonic (the second one in the case
of w; = wy = wy) is equal to the sum of phases of the
primary waves. Therefore, in contrast to the second har-
monic, destructive interference of the nonlinear responses
of defects with different parameters of compliance does
not occur for the difference-frequency component.

In the case of the wide distribution equation (27) of the
defects over the compliance parameter (, that is, for the
relaxation-band medium, the complex amplitude A ; may
be written in the following form (here we again assume
that w1 &~ wy = w, and wy K w):

ReAq(z) ~ M(Q)2x{ﬂ arctan (Q)

2C' w Q Wy
(S]]
— —arctan | — (33)
Q ( w ) c=a
¢=b
N _ nyAidy wi 1+ (w/¢Q)?
SmAg(r) ~ S TORE zln T+ (a2 |,

These expressions again display the influence of relax-
ation on the nonlinear transformation via both the high fre-
quency (w1 & w2 = w) primary waves and the secondary
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Figure 6. Magnitudes of the normalized parameter of nonlinear-
ity N, for the difference-frequency harmonic plotted against fre-
quency w in the case of a medium with defects characterised
by a distribution both in the elasticity parameter ¢ (the distri-
bution boundaries a = 107* & = 107") and in parameter ©,
that is in viscosity. Curve 1 is for Q,/Q, = 10; curve 2 is for
Q/Qa = 10*.

signal at difference frequency w 4. For low difference fre-
quency, wg < afls, the dependence of parameter N4 on
the frequency w is shown in Figure 5 (curve 2). The fre-
quency behavior of the curve corresponds to the response
of the medium with relaxation-band spectrum [a(2, b(2].
Namely, at w < af2, parameter N; =const., further in the
intermediate band a2 < w < b2 the nonlinear parameter
decreases approximately as Ng ~ w™!, and at w > b} the
rate of the decrease becomes higher, Ny ~ w™2 as in the
case of identical defects at high frequency w > (€.

Note that the examples considered above related to the
case of defects distributed over their parameter of com-
pliance, v = v((), whereas a more realistic situation is
a distribution over both the compliance and the effective
viscosity of the defects, that is v = v((, 2). Figure 6 illus-
trates that when the defects have a wide distribution over
their compliance parameter (, the influence of the addi-
tional distribution over {2 does not significantly change the
medium response. The curves in Figure 6 show examples
of the frequency dependence of effective parameter N 4 in
cases of a wide Il-shape distribution over compliance (
and over both parameters (2 and (. The curves indicate
that for wide distribution over parameter (, the difference
between the cases of a fixed ) and quite a wide II-shape
distribution over 2 (with 4 order difference between the
boundary values, Q,/Q, = 10%) is not significant (see
also the discussion of the distribution over {2 in papers
[26, 28]).

5. Self-demodulation of pulses with a
high-frequency carrier

Let us consider another example of the manifestation
of frequency-dependent nonlinearity in microinhomoge-
neous solids, namely the effect of self-demodulation of
pulses with a high-frequency carrier, which is a well
known phenomenon in nonlinear underwater acoustics
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[30] and is readily observed in microinhomogeneous
solids [31]. Unlike the case of frequency-independent non-
linearity of pure water, the example considered below in-
dicates that relaxation properties of the medium affect not
only the magnitude of the nonlinear parameter, but also
qualitatively (functionally) influence the relation between
the shape of the primary wave modulation function and
the form of the demodulated pulse.

To describe the nonlinear transformation of the pulse,
we shall use equations (14), (18) for the primary and sec-
ondary waves. In this section we consider the case of the
wide relaxation spectrum, equation (27), which in the lin-
ear approximation manifests itself in a near-constant ()
of the medium and can model, for example, properties
of rocks. For the primary wave with a sinusoidal carrier
and slow pulse modulation, the boundary condition may
be written in the following form:
V(z=0,7) =V®(7/T)sinwer, wor > 1. (34)
We suppose that both the carrier frequency wo and the
demodulated pulse spectrum belong to the range a{) <
w < b) in which the phase velocity of the waves exhibits
weak dispersion, whereas the ()-factor is nearly constant
and the attenuation coefficient nearly linearly depends on
frequency. Equations (17), (27) then yield the following
correction to the complex wave number:

Vow { In {bQ + (w/Q)T

K@ =46\ |mvw/nz

+ i2 arctan [bﬂ/w — aQ/w} } 35)

1+ ba(Q/w)?

Therefore, in the frequency band af) < w < bS that we
consider here,

ReK (w) =~ % In L‘)/LQ], (36)
SmK (w) ~ ”4”%”. (37)

Using equations (35)—(37), by analogy with the estimate
given in equation (22), one may readily estimate that for
spectral components belonging to the band aQ) < w < bf2,
it is possible to neglect phase mismatch between the in-
teracting waves within the decay length 1/3mK (wg) of
the primary high-frequency wave. Therefore, within the
interaction length, the frequency-dependence of the wave
velocity may be neglected, and the narrow-band primary
wave thus may be approximated by the following expres-
sion via the retarded time:

Vi(z,7) = %@(T/T)e*wo“iw +ec, (38)

where according to equation (37), the coefficient y =~
7o /4C. In order to find the demodulated pulse, the non-
linear source in the right-hand side of equation (18) should
be averaged over a time scale larger than the carrier period
27wy and smaller than the scale T' of the modulation
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function ®(7/T). In the structure of the low-frequency
nonlinear source

vy 0 2

, :——J{R[R 1% ]} 39
Q7 = 5 5T {B[(R20R) (39)
(where (..) denotes time-averaging), it is possible to ne-
glect slow modulation when evaluating the relaxed pri-
mary wave R(V7). Thus the quadratic nonlinear term
(R*(V1)) in equation (39) can be approximately repre-

sented as:

Q2VER%(r/T
<R2(V1)> — Wégég))e 2Xw0z_ (40)
The relaxation operator outside averaging brackets (..)
in equation (39) is applied to the low-frequency term
(40). Then the linearized equation (18) with the nonlin-
ear low-frequency source for the demodulated pulse may
be Fourier-transformed and solved for amplitudes of the
pulse Fourier-harmonics as was done above for the sec-
ond harmonic and the difference frequency wave. The ac-
cepted assumption a) < 27/T < wpy < bSY simplifies
the problem, since we may neglect the mutual phase mis-
match between frequency components within the interac-
tion length L ~ 1/(2xwo). Further, the temporal shape
of the nonlinearly generated pulse may be found by in-
verse Fourier transformation of the solution found in the
frequency domain:

iWOF © 82 (r/T)

2
Vo(e,r) = 20 F 1 g

4C (wg + ¢22) (iw + ¢0)
. 1-— exp[—x(2w0 - W)w] emxwe | 41)
X (2w — w)

where the Fourier operator F has the meaning F ® f (1) =
[ f() exp(—iwT)dr. Equation (41) may be further
simplified at z < 1/(2ywo) and z > 1/(2xwp). At small
distance z < 1/(2xwyp), the factor (1 — exp[—x(2wo —
w)z])/x(2wp — w) reduces to z, so that Va(z,7) ini-
tially grows linearly with distance. At larger distance,
x > 1/(2xwo), beyond the interaction length, the factor
(1 — exp[—x(2wo — w)z]) /X (2w — w) ~ 1/x(2wo — w).

As an instructive concrete example we consider the case
of the Lorentz type modulation function, ®2(7/T) =
1/[1 + (7/T)?), with the Fourier transform F ®
®2(7/T) = 7T exp(—wT). In this case, the argument
of the operator F ~! in equation (41) may be analytically
found via Euler functions, and then the inverse transform
F ! is readily evaluated numerically. Note that the in-
fluence of the attenuation exp(—ywz) in expression (41)
results in a self-similar transformation of the pulse spec-
trum: exp(wT') — exp[(T + zx)w]. Examples of calcu-
lated shapes of demodulated pulses in the medium with
the wide spectrum, equation (27) of defect compliance are
shown in Figure 7 together with the reference pulse cor-
responding to a homogeneous medium with conventional
frequency-independent “instantaneous” nonlinearity. For
the latter case of “instantaneous” nonlinearity, the shape
of the pulse may be obtained from equation (41) in the

Normalized amplitude
o

Figure 7. Temporal forms of the demodulated pulses in the
relaxation-band medium with frequency-dependent nonlinearity
(dashed and dotted lines), and a reference symmetrical pulse in
the medium with frequency-independent quadratic nonlinearity
(the solid line). The dashed and dotted curves correspond to dif-
ferent positions of the demodulated pulse spectrum within the
relaxation band spectrum [a€2,b2] of the defects. The dotted
curve is for a = 107%, b = 1072; the dashed curve is for
a = 107%,b = 10~". The initial inverse duration of the pulse
1/T = 10"%Q in all cases.

limit w < (€. In this case, at small distances, where the
pulse spectrum is not affected by linear attenuation, the
pulse temporal form is proportional to the first derivative
of the squared primary pulse (the symmetrical solid curve
1 in Figure 7):

Vhom (2 1) o £<I>2(T/T). (42)
or

Figure 7 shows that in the medium with relaxation, the
pulse shape is distorted (the asymmetrical dashed and dot-
ted curves), the extent of the distortion being dependent on
the position of the demodulated pulse spectrum within the
frequency band of near-constant (). The origin of such an
asymmetrical distortion may be readily understood from
the structure of expression (41). Indeed, in the medium
containing defects with a wide relaxation-band spectrum,
the resultant pulse shape is formed by contributions of two
significantly different fractions of the defects. The first
fraction consists of the defects with “instantaneous” re-
action, those whose relaxation frequencies () are much
higher than the pulse spectral components, ({2 > w. The
contribution of this fraction to the form of the pulse is pro-
portional to the derivative 9®2(7/T) /07 as in the case
of an homogeneous medium with “instantaneous” nonlin-
earity. The second fraction is constituted by defects with
low relaxation frequencies () < w. For these defects,
the factor 1/(iw + () in equation (41) may be approxi-
mated by 1/iw, which corresponds to a spectral represen-
tation of the integration over time 7. This fraction thus
gives to the resultant shape of the demodulated pulse a
contribution close to ®2(7/T) instead of the derivative
0®2(7/T)/O7. Superposition of these contributions with
and without the derivative, 0®>(r/T) /07 and ®*(7/T),
produces an asymmetrical pulse shape as displayed in Fig-
ure 7 (the dashed and dotted curves). Note that in the
case of (£ > w for almost all defects, the second con-
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tribution may become dominant, so that the demodulated
pulse shape will be close to ®2(7/T). However, since
1/(iw + () ~ 1/iw is only an approximation, the pulse
(41) will have a long, small-amplitude negative tail, so that
the condition of conservation of pulse area for evolution
equations (11), (12) will be satisfied (analogously to the
case of the conventional KdV-Burgers equation).

6. Conclusion

The results presented in this paper indicate that nonlin-
ear effects in microinhomogeneous (mesoscopic) media
with relaxation may exhibit significant differences from
homogeneous materials possessing conventional “instan-
taneous” (atomic) elastic nonlinearity. The analysis has
shown that the relaxation properties of the micro-defects
determine the onset of linear dissipation and dispersion
characteristics of the material, as well as the frequency-
dependence of its nonlinearity. The derived equations con-
sistently take into account all the aforementioned material
characteristics. For the class of microinhomogeneous ma-
terials, the obtained evolution equation is in fact an ana-
logue and generalization of the KdV-Burgers equation that
is conventionally used in nonlinear acoustics of homoge-
neous media.

In the linear approximation, equations (4), (5) and
(10), (12), in particular, allow for taking into account a
near-constant () factor and the complementary logarith-
mic dispersion corresponding to the presence of a wide
relaxation-band spectrum of defects. Such linear proper-
ties accompanied by pronounced elastic nonlinearity are
typical of a wide class of microstructured solids, for exam-
ple, rocks normally containing cracks, inter-grain contacts
and similar defects. Nowadays, there is general consen-
sus that this microstructure essentially determines mate-
rial acoustic response, but still there is a lack of theoret-
ical models consistently connecting macroscopic acousti-
cal linear and nonlinear characteristics to the microstruc-
ture of the medium. The present paper attempts to make
up this deficiency and to take a step beyond a purely
phenomenological approach to theoretical modeling of
structure-induced nonlinearity.

Among other microstructure-induced acoustic proper-
ties, dispersion of nonlinearity is seemingly the least stud-
ied. Concerning the specific features discussed above, it is
essential to note that the structure of the nonlinear terms
in equations (10), (11) clearly exhibits a two-fold effect of
the defect’s relaxation on the material nonlinearity. First,
the relaxation affects the material linear response, that is
the argument of the nonlinearity function F'(..) (see equa-
tions 10, 11). Such a manifestation of relaxation is univer-
sal for any type of nonlinear process and arbitrary nonlin-
earity function F(..). Second, the “output” of nonlinearity
F(..) is also affected by the relaxation (see the relaxation
operator outside the function F'(..) in equations (10), (11).
The resultant effect, therefore, essentially depends on the
concrete type of the nonlinear process, and may signifi-
cantly differ depending on whether the process results in
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down- or up-conversion in the wave frequency. Thus in
the case of frequency-dependent nonlinearity, the nonlin-
ear response of the material cannot be characterized by a
single (or a few) universal nonlinear parameter(s) in con-
trast to homogeneous media without relaxation.

Due to the dependence of the nonlinearity parameters
on the type of nonlinear transformation, in particular, the
ratio of the amplitudes of the second A» and difference
frequency A4 harmonics in homogeneous and microinho-
mogeneous media with frequency-dependent nonlinearity
is significantly different. Equations (24) and (30) yield that
this ratio (at wi2 & w > wq and A1 5 = Ay) in the mi-
croinhomogeneous material has the form:

(C)? + (2w)?
(€)% +w?

(43)

In the homogeneous medium with constant nonlinear pa-
rameter (which corresponds to the limit wy < w < (),
the ratio (43) is rather small, |A4(z)/As(z)| = wa/2w K
1, whereas in media with relaxation, the ratio (43) may
reach unity at w > ({). Besides, for second harmonic gen-
eration, it was shown that in media containing defects with
different parameters, the effective nonlinear coefficient
may exhibit non-monotonous frequency dependence. In
contrast, for difference-frequency generation, such a non-
monotonity cannot occur. As another instructive example
of the effect of the dispersion of nonlinearity, the distor-
tion of the shape of low-frequency demodulated pulses
due to the influence of frequency-dependent nonlinearity
was discussed in the previous section.

Therefore, the performed analysis and considered ex-
amples have confirmed that, in addition to the conven-
tionally-considered influence via linear dispersion and dis-
sipation, the effect of relaxation via frequency-depen-
dence of nonlinearity may significantly change the char-
acter of nonlinear processes.

In this paper, detailed discussions of concrete examples
are limited to the case of a quadratic-in-strain nonlinear
term. However, wave equations (10), (11) were derived for
a more general nonlinearity function and could be readily
applied to other types of nonlinearity. In particular, it is
generally accepted that equations of state for microinho-
mogeneous media should incorporate hysteresis [2, 3, 4].
It is known that memory properties of hysteretic materi-
als allow for one-to-one approximation of stress via mate-
rial strain and its time derivative only in special cases of
loading of the material. For example, such a description is
possible for a (quasi)periodic stress-strain process with a
single maximum and a single minimum over the period.
In these cases, the corresponding equation of state of may
be approximated, for instance, by a piece-wise power hys-
teretic [2, 3, 4, 11, 12, 13, 18, 19, 20, 21] or, generally
speaking, some other non-analytical function [13]. With
a hysteretic nonlinearity in function F'(..), equations (4)—
(11) provide a description of microinhomogeneous me-
dia with defects exhibiting both relaxation and nonlinear-
hysteretic properties. The developed theory thus may be
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applied to the interpretation of experimental data indicat-
ing the frequency-dependence of nonlinear properties of
hysteretic materials [10, 11, 12]. Note finally, that due to
the aforementioned structure-induced nonlinearity and re-
laxation in microinhomogeneous solids, nonlinear trans-
formations of elastic waves in such media exhibit essen-
tial quantitative and qualitative differences from homoge-
neous media, opening attractive possibilities for diagnos-
tics of material microstructure.
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