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Abstract

The influence of a weak high-frequency acoustic signal (a dither) on the absorption and velocity of a stronger harmo
in a medium with hysteretic quadratic nonlinearity is analysed. It is demonstrated that, depending on the relative pha
stronger wave and the weak dither, either the effects of the induced absorption or of the induced transparency are
A physical explanation of the effects proportional to the dither amplitude is proposed. It is predicted that the absorptio
acoustic wave by a noise in the materials with hysteretic quadratic nonlinearity is proportional to noise intensity.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

There are currently two important tendencies in the evaluation of the mesoscopic materials (such a
polycrystalline metals, ceramics, etc.) by the methods of the nonlinear acoustics. First, the researchers
and more elaborated methods and principles for the analysis of the acoustic nonlinearity of these mater
experiments on the self-action of harmonically pumped acoustic wave in the resonators [1–3] are repl
the experiments on mixing the acoustic waves of different frequencies [4–10]. The latter experiments p
in particular, an access to the information on the dispersion (i.e., the dependence on frequency) of the
nonlinearity [10,11]. Second, a consensus among the researchers on the importance of the dissipative no
in the mesoscopic materials is growing [4–11]. Different manifestations of the interaction and/or of the self
of the acoustic waves due to possible nonlinear absorption has been reported in rocks [3,12,13], polycr
metals [1,4–10], sand [11–14] and even in the homogeneous materials containing individual cracks [15–1
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However, there is no consensus on the physical mechanisms of the dissipative nonlinearity in the me
materials. There are purely phenomenological models [12–14,18], there are models introducing n
dissipation in the acoustically induced motion of the dislocations [10], there are models attributing no
dissipation to soft mechanical elements in the mesoscopic materials [9,19]. In particular, it might be expec
thermoelastic absorption of sound by soft contacts between the crack lips or between the grains (in polycr
materials) contributes to nonlinear dissipation. The nonlinearity of the latter mechanism is due to the mo
of the contact dimensions by the acoustic waves. Finally, it is well established that in the mesoscopic m
the hysteretic quadratic nonlinearity plays an important role. In particular, the variation of the acousti
decrement proportionally to the wave amplitude is commonly attributed to the hysteretic quadratic nonl
[1,3]. Evidently the hysteretic nonlinear absorption should contribute to the processes of frequency mixing

In the analysis of each particular experiment the different contributions to nonlinear dissipation listed
should be compared. For this comparison the role of the different mechanisms of the dissipative non
in various possible processes should be studied. This research is currently in progress. The absorp
weak ultrasonic pulse under the action of an intense low-frequency pumping wave has been analys
in the framework of the modified Granato–Lucke theory [10] and as being caused by the hysteretic qu
nonlinearity [20]. General theoretical predictions for the induced absorption or amplification of a small am
acoustic wave of an arbitrary frequency in the field of a large amplitude harmonic pump wave (traveling or st
in the materials with hysteretic quadratic nonlinearity has been formulated [20]. In the following a complem
theory of a weak signal influence on a strong wave (due to the presence of the hysteretic nonlinearity) is de

2. Theory

The hysteretic quadratic nonlinearity is known to be even (quadratic) in acoustic wave amplitude but
character (symmetry) of an odd nonlinearity in its physical manifestations [1,3,20–23]. An elementary sc
process due to the interaction of a weak signal at a cyclic frequencyωs and of an amplitudea with a strong wave
at a frequencyωp and of an amplitudeA is controlled by the following conservation law [20,25]

(1)ω = ±ωs − 2mωp,

wherem = 0,±1,±2, . . . is the integer number andω denotes the frequency of the scattered wave. The sele
rule in Eq. (1) indicates that nonlinear scattering in a medium with hysteretic quadratic nonlinearity is a
phonon process. The scattered phonon is combined of a phonon from a weak signal wave and of 2m phonons from
a strong wave. The amplitude of the wave scattered in process (1) is proportional to the product of the we
and the strong wave amplitudes(∝ aA). The selection rule in Eq. (1) is valid for the self-action of the strong w
as well. In the latter caseωs = ωp and form = ±2 the scattered wave frequencyω is equal to the stronger wav
frequencyωp: ω = ±ωs ∓ 2ωp = ∓ωp . This provides a direct mechanism for the self-action due to a singl
of the nonlinear scattering [20,21]. The variation�A of the stronger wave amplitude due to the self-scatterin
proportional to the square of its own amplitude(∝ A2) [21,24]. Consequently fora � A the influence of a signa
on the stronger wave is at least a factor ofa/A � 1 weaker in comparison with the strong wave self-action.

However the effects of the order ofa/A � 1 are possible not for all relative values of the weak-wave and str
wave frequencies. Actually it is impossible to get a scattered wave at the frequency of the stronger wave
satisfy Eq. (1) withω = ±ωp) if the weak-wave frequencyωs differs from the odd harmonics of the strong-wa
frequency. The processes of the first order ina/A � 1 are allowed only for

(2)ωs = (2m + 1)ωp, m = 0,±1,±2, . . . .

The latter requirement is a one more manifestation of the odd character (symmetry) of the hysteretic q
nonlinearity. A signal wave at a frequency that differs from Eq. (2) might influence the stronger wave only th
the scattering processes, which are less effective than those described by Eq. (1). For example if the sig
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is an even harmonic of the strong wave(ωs = 2mωp) then modifications of the strong wave will be at least of
order of(a/A)2 � a/A � 1.

In the following, we analyse the pump wave modifications caused by the presence of a weak wave at o
pump wave harmonics (ωs = nωp , n = ±1,±2, . . .). The results obtained confirm the presented above qualit
ideas. For the odd harmonics (n = 2m + 1, m = ±1,±2, . . .) the variations of the stronger wave amplitude a
velocity proportional to weak-wave amplitude are possible. For the even harmonics (n = 2m, m = ±1,±2, . . .) the
variations in the stronger wave induced by the weaker one are proportional to the square of the signal am
These latter weak effects are evaluated just for comparison with the recent predictions obtained both num
and analytically for the fundamental wave interaction with its second harmonic [26].

Both the induced variations of the fundamental wave absorption and velocity are evaluated. Forωs = nωp the
total acoustic field composed of the stronger and the weaker (high-frequency) waves is periodic with a
2π/ωp . In this case there is no need to apply the mathematical formalism of successive approximations de
in [21,25] for the mixing of the incommensurate frequencies (that treats the interaction process at the time
from t = −∞ to t = ∞). A simpler iterative procedure at a single period of the acoustic field (−π/ωp � t < π/ωp)
is applied.

It should be mentioned that a high-frequency signal acting on a nonlinear system is commonly called the
[27,28]. The dithers have been used to modify the behaviour of different systems (to compensate for the e
the Coulomb friction, dead zones in hydraulic valves and hysteretic effects, as well as for the stabilisatio
systems [27,28]). Commonly the injection of a dither is supposed to smooth the discontinuities in the inte
(in particular the discontinuity of friction at low velocity) [28]. In this terminology the analysis presented b
for |n| � 2 might be called the theory of “dithering” of a material with hysteretic quadratic nonlinearity.

Let us assume that in the presence of a stronger wave and a weaker dither the local strains in a material is
described by

(3)s = Acosθ + a cos(nθ + ϕ).

Hereθ = ωpt is the nondimensional time variable andϕ is the phase shift of the dither relative to the strong
wave phase. The materials with the hysteretic quadratic nonlinearity are known to exhibit a property of t
point memory [29,30]. For the purposes of the current analysis this property can be formulated as follow
material remembers the maxima and the minima in the strain loading history and the nonlinear contrib
elastic modulus depends on how the current strain values is positioned relative to the different memorised extre
se . It should be mentioned here that the information on the extremum could be erased in the process of su
loading [26,29–31] when the strain, reaching this memorised extremum, does not change the sign of th
rate. In other words, the memory of an extremum is erased if the loading passes valuese , but does not have a
this former extremum a turning point. In practice, the nonlinear contributionEH to the modulus due to hysteret
quadratic nonlinearity abruptly diminishes to zero when the strain exhibits an extremum in the loading histo
subsequent variation of the nonlinear contribution to the modulus is proportional to the deviation of the stra
its value in the latest extremum

(4)EH ≡ ∂σH

∂s
= −hHE|s − se|.

HereE is the linear elastic modulus,hH is the characteristic nondimensional parameter of the hysteretic qua
nonlinearity [21,22,32], andσH denotes the corresponding nonlinear contribution to stress. Note that E
predicts softening of a mesoscopic material (EH < 0 for hH > 0) in accordance with multiple experimen
observations [1–3]. The relation (4) is valid until the loading reaches the subsequent extremum in its histor
the system passes one of the previously memorised extrema. In the latter case the relation in Eq. (4) s
modified after the moment when the strain passes this former extremum (i.e., when the strain reaches a m
maximum and keeps increasing or it reaches a memorised minimum and keeps decreasing). See, for
Refs. [26,31].
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In order to get with the help of Eq. (4) a description of the modulus variation over a complete wave peri
necessary to find the extrema in the loading history (3). The end pointsθm corresponding to these extrema are
solutions of the equation

(5)
∂s

∂θ
= −A

[
sinθ + a

A
nsin(nθ + ϕ)

]
= 0.

It can be verified that under the conditiona/A < 1/n2 Eq. (5) has only two roots over a period (correspondin
an absolute maximum and an absolute minimum of strain). Fora/A > 1/n2 additional roots may appear for som
values of the phase shiftϕ. This corresponds to the appearance of the local extrema in addition to the absolu
(to the formation of the internal, minor loops in the hysteretic stress/strain relationship). The influence of th
loops formation on the stronger wave has been studied recently both numerically and analytically in the casn = 2,
ϕ = 0,π/4 [26]. The loop in the latter case is formed when the amplitudes of the stronger wave and the
one are not very different (a/A ∝ 1). The present analysis is devoted to the influence of a weak signal on a
wave (a/A � 1) in the absence of the minor loops induced by dithering. Only the loading histories with a
maximum and a single minimum over a wave period are considered. Moreover we assume the condition

(6)
a

A
n2 � 1

to be fulfilled. The inequality in Eq. (6) keeps the system sufficiently far from the regime of minor loops form
Importantly under the condition (6) the positions of the strain extrema can be evaluated approximately as

(7)θm = mπ + �θm ≈ mπ − (−1)m(n−1) a

A
nsinϕ +

(
a

A

)2

n3 sinϕ cosϕ.

Herem = 0,±1,±2, . . . , θm+2 − θm = 2π , and�θm denotes the shift of the extremum induced by the dither.
strain valuess(m)

e in the extrema are also modified by the dither

(8)s(m)
e = s(θm) ≈ A

{
(−1)m + (−1)mn a

A
cosϕ + (−1)m

(
a

A

)2
n2

2
sin2 ϕ

}
.

Only the terms up to the second order in the small parametera/A � 1 are retained in Eqs. (7) and (8).
With the information on the extrema in hands the description of the nonlinear modulus behav

straightforward. During the periodθ−1 � θ � θ1 Eq. (4) predicts the following dynamics ofEH

(9)EH = −hHE

{
s − s−1, θ−1 � θ � θ0,

s0 − s, θ0 � θ � θ1.

The integration of Eq. (9) over strain provides the description of the hysteretic stress/strain relationship

(10)σH =




σH(θ−1) − 1

2
hHE(s − s−1)

2, θ−1 � θ � θ0,

σH(θ0) + 1

2
hHE(s − s0)

2 = σH(θ−1) − 1

2
hHE

[
(s0 − s−1)

2 − (s − s0)
2
]
, θ0 � θ � θ1.

In the derivation of the second part in Eq. (10) the continuity of stress in the end-points (atθ = θ0) has been take
into account.

The hysteretic nonlinear absorption is characterised by the energy losses�W = ∮
σH(s) ds over a wave period

in a unit volume. Note that the termσ(θ−1) in Eq. (10) (which does not vary over a wave period) does not contri
to dither-induced modifications of the energy�W = ∮

σH(s) ds dissipated in the material. Thus for the purpo
of the current study the evaluation of termσ(θ−1) is not necessary. To evaluate the hysteretic losses�W1 of the
stronger waveAcosθ , the total stressσH(s) in Eq. (10) should be considered, but only the contribution of
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(11)�W1 = −A

θ1∫
θ−1

σH
(
Acosθ + a cos(nθ + ϕ)

)
sinθ dθ.

To arrive to the traditional form of the losses presentation the energy density in the strong wave average
wave period is found

W1 = E

2π

θ1∫
θ−1

(Acosθ)2 dθ = EA2

2

and the acoustic decrement of the stronger wave is defined in the conventional sense byD1 = �W1/(2W1). The
result of the decrement calculation can be presented in the form

D1

D1(a = 0)
≈ 1+ [

1− (−1)n
]3(n2 − 3)

2(n2 − 4)
cosϕ

(
a

A

)

(12)− 3

4

{
1− cos(2ϕ)

4n2 − 1
+ 2

(−1)nn2 + 1

n2 − 1
cos2 ϕ − 2n2 sin2 ϕ

}(
a

A

)2

,

whereD1(a = 0) = (4/3)hHA is the amplitude-dependent decrement of the strong wave in the case of it
action (i.e., in the absence of a dither).

The modification by a dither of the modulus for the stronger wave can be evaluated as [33,34]

(13)�E1 = 1

A

2

π

θ1∫
θ−1

σH
(
Acosθ + a cos(nθ + ϕ)

)
cosθ dθ.

In Eq. (13) in comparison with Eq. (11) cosθ appears under the integral instead of sinθ . With the help of Eq. (13)
the stronger wave velocity modification�c1 induced by the dither can be evaluated and presented in the form

�c1

�c1(a = 0)
≈ 1+ [

1− (−1)n
]{cosϕ

2
+ 2

π

n2 − 2

n(n2 − 4)
sinϕ

}(
a

A

)

(14)+
{

sinϕ

2
+ 2

πn

[
2

4n2 − 1
− 1+ (−1)n

n2 − 1

]
cosϕ

}
n2 sinϕ

(
a

A

)2

.

Here�c1(a = 0) = −hHc0A denotes the reduction of the stronger-wave velocity due to its self-action,c0 is the
velocity of a linear acoustic wave (i.e., of a wave of an infinitely small amplitude). Both in Eq. (12) and in Eq
only the terms up to the second order in a small parametera/A � 1/n2 � 1 are retained.

The analytical results (12), (14) for the decrement and the phase velocity confirm the conclusion derive
on the basis of the selection rule (1). Only the dithering at frequencies equal to the odd harmonics of the
wave leads to its modification proportional to the dither amplitude. Neglecting in Eq. (12) and in Eq. (14)
casen = 2k + 1 (k = 0,±1,±2, . . .) the terms of the order of(a/A)2 this effect is described by

(15)
D1

D1(a = 0)
≈ 1+ 6

2k2 + 2k − 1

(2k − 1)(2k + 3)
cosϕ

(
a

A

)
,

(16)
�c1

�c1(a = 0)
≈ 1+

{
cosϕ + 4

π

(2k + 1)2 − 2

(2k − 1)(2k + 1)(2k + 3)
sinϕ

}(
a

A

)
.



122 V. Gusev, V.Yu. Zaitsev / Physics Letters A 314 (2003) 117–125

s
ld
ment and

Eq. (7)
trema
ally,

nd
the total
relative
e dither

of
y

tic field

ter
rovides
and at

s

phase
ulation
Fig. 1. The normalized total strain fields/A in the absence of any dithering (continuous curve, the strong waves/A = cosθ ), when dithering
is accomplished at the second harmonic of the strong wave (dash-dotted curve,s/A = cosθ + (1/5)cos(2θ)), and when the dithering i
accomplished at the third harmonic of the strong wave (dashed curve,s/A = cosθ + (1/5)cos(3θ)). The modulation of the total acoustic fie
amplitude proportional to the dither amplitude is achieved only in the latter case. This leads to the variation of the strong wave decre
the phase velocity proportional to the dither amplitude.

The physical interpretation of the result in Eq. (15) can be obtained by noting that in accordance with
a dither at frequencyωs = (2k + 1)ωp does not modulate the time interval between the subsequent ex
(�θm − �θm−1 = 0 for n = 2k + 1), but it strongly influences the amplitude of the total acoustic field. Actu
from Eq. (8) it follows that in the casen = 2k + 1 the acoustic wave amplitude is equal to

(17)
1

2
|sm − sm−1| ≈ 1+ a

A
cosϕ.

Here only the contribution up to the first order in small parametera/A � 1 is retained. Comparison of Eq. (17) a
Eq. (15) demonstrates that the variation in the stronger wave decrement is proportional to the variation of
acoustic field amplitude. The most important is that both variations exhibit the same dependence on the
phaseϕ between the dither and the stronger, low-frequency wave. It can be concluded that the influence of th
on the low-frequency stronger wave can be of the order ofa/A if the dither is able to induce the modulation
the strong-wave amplitude of the same ordera/A. In contrast to the caseωs = (2k + 1)ωp a dither at a frequenc
ωs = 2kωp modulates the total acoustic amplitude|sm − sm−1|/2 only at the level∝ (a/A)2 � a/A � 1 (as it
follows from Eq. (8)). Although in the casen = 2k the magnitude of strain in the individual extremasm andsm−1
is modulated at the level∝ a/A this (in the absence of the variation in the amplitude|sm − sm−1|/2 of the order
of a/A) contributes to the decrement variation only in the next order of smallness. In Fig. 1 the total acous
is presented in the absence of the dithering, and also when the system is dithered at frequenciesωs = 3ωp and
ωs = 2ωp. The phaseϕ is chosen to be equal to zero. In order to enlighten the discussed effects the paramea/A

in Fig. 1 is chosen to be rather large (its value does not satisfy the strong inequality (6)). However, Fig. 1 p
a clear and physically correct qualitative illustration of the difference in the influence of the dithers at odd
even harmonics of the strong wave on the total acoustic field.

In accordance with Eq. (15) the dither at an odd harmonic can induce either additional absorption (if coϕ > 0)
or the transparency (if cosϕ < 0). For ϕ = ±π/2 the decrement variations of the order ofa/A are absent. In
accordance with Eq. (16) the dependence of the induced variation in the stronger-wave velocity on theϕ
differs from that for the absorption. Because of this the modulation of the velocity can dominate over the mod
of the decrement (in the vicinity ofϕ = ±π/2, for example). At the same time linear ina/A variation in the



V. Gusev, V.Yu. Zaitsev / Physics Letters A 314 (2003) 117–125 123

ency

ncy

efficient.

t
ng

e of
es.

f a weak
ls with
n law in
the same
n of a
late the

ion for

stronger
adratic
[35,36].
ity the
spectral
mponent
-
t

stronger-wave velocity disappears for the critical phase

ϕcr = −arctan

{
π/4

((2k + 1)2 − 2)/((2k − 1)(2k + 1)(2k + 3))

}
.

Consequently, for the phases nearϕcr the induced variations of the decrement dominate. For the high-frequ
dithering (withk 
 1) the results in Eqs. (15) and (16) can be simplified

(18)
D1

D1(a = 0)
≈ 1+ 3 cosϕ

(
a

A

)
,

�c1

�c1(a = 0)
≈ 1+ cosϕ

(
a

A

)
.

The asymptotic formulas (18) (valid fork 
 1,a/A � 1/4k2) demonstrate that the influence of the high-freque
dithers on the wave velocity is comparable to its influence on the wave amplitude for all possibleϕ.

The influence of a dither at a frequency equal to an even harmonic of the strong wave is essentially less
Forn = 2k (k = 0,±1,±2, . . .) Eqs. (12) and (14) take the form

(19)
D1

D1(a = 0)
≈ 1− 3

4

{
1− cos(2ϕ)

16k2 − 1
+ 2

4k2 + 1

4k2 − 1
cos2 ϕ − 8k2 sin2 ϕ

}(
a

A

)2

,

(20)
�c1

�c1(a = 0)
≈ 1+

{
sinϕ

2
+ 2

πk

[
1

16k2 − 1
− 1

4k2 − 1

]
cosϕ

}
4k2 sinϕ

(
a

A

)2

.

The solution in Eq. (19) reproduces the results obtained earlier [26] both numerically and analytically fork = 1,
ϕ = 0,π/4. In particular, the effect of the induced transparency(∝ (a/A)2) is confirmed forϕ = 0 and the effec
of the induced absorption (∝ (a/A)2) is confirmed forϕ = π/4. In the regime of the high-frequency ditheri
(k 
 1) the results in Eqs. (19) and (20) can be simplified:

(21)
D1

D1(a = 0)
≈ 1+ 6k2 sin2 ϕ

(
a

A

)2

,
�c1

�c1(a = 0)
≈ 1+ 2k2 sin2 ϕ

(
a

A

)2

.

The asymptotics in Eq. (21) (valid fork 
 1, a/A � 1/4k2) demonstrate once again the comparable influenc
the high-frequency coherent excitations on the stronger-wave absorption and velocity for all possible phas

3. Discussion

The developed theory provides an important time-domain criteria necessary for the effective influence o
signal on a stronger wave. Earlier [20,21,25] the criteria of the effective frequency mixing in the materia
hysteretic quadratic nonlinearity has been formulated in the frequency-domain as an energy conservatio
multiphonon processes (see Eq. (1)). The results presented in Section 2 indicate that in the time-domain
criteria can be formulated in terms of the amplitude modulation of the total acoustic field. The modulatio
stronger wave by a weak signal is proportional to the signal amplitude and the signal is capable to modu
total field amplitude efficiently (i.e., also proportionally to the signal amplitude). This is a necessary condit
the efficient modulation of both the decrement and the velocity of the stronger wave.

The developed theory can be applied to derive some preliminary conclusions on the propagation of the
wave in the presence of the acoustic noise. It is well known that in materials with classical (elastic) qu
nonlinearity noise induces additional absorption of acoustic waves proportional to noise spectral intensity
From the solutions derived in Section 2 it follows that in the materials with hysteretic quadratic nonlinear
interaction of the stronger wave with the noise can lead to absorption that is also proportional to noise
intensity. Assuming that in the stochastic acoustic field (in the acoustic noise) the phase of a spectral co
varies chaotically (homogeneous distribution of phase in the interval−π � ϕ � π ) it can be verified that the strong
wave modifications proportional toa/A in Eq. (12) disappear in averaging over−π � ϕ � π . Only the decremen
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(22)
D1

D1(a = 0)
≈ 1+ 3

4

{
n2 − (−1)nn2 + 1

n2 − 1
− 1

}(
a

A

)2

.

In accordance with Eq. (22) the interaction of the spectral components of the noise with the stronger wave
induces for this wave an additional absorption (the coefficient in front of the(a/A)2 in Eq. (22) is positive for
all n).

To finish the discussion it is worth noting that in engineering the term “dither” is also used to re
unintentional noise which may be picked up by a system [27]. Moreover, the coherent signals inject
nonlinear system are sometimes referred to as artificial dithers. So, the discussed above interaction of
frequency stronger wave with a noise is just a particular case of dithering the systems with the hysteretic q
nonlinearity.

4. Conclusions

The influence of an artificial weak dither on the absorption and velocity of a stronger harmonic wav
medium with hysteretic quadratic nonlinearity is analyzed. It is demonstrated that due to odd symmetry
acoustic nonlinearity the modifications of the stronger wave by the dither at frequencies equal to its odd ha
is proportional to the dither amplitude. Depending on the relative phase of the low-frequency strong wave
dither either the effects of the induced absorption or of the induced transparency are possible. The induce
proportional to the dither amplitude are due to the capability of the dither to modulate the amplitude of th
acoustic field proportionally to the dither amplitude. The modifications of both the absorption and the velo
the stronger wave by a dither at a frequency equal to an even harmonic of the strong wave is proportion
square of the dither amplitude. It is predicted that the absorption of the acoustic wave by a noise in the m
with hysteretic quadratic nonlinearity is proportional to noise intensity.

An interesting perspective for the extension of the developed theory is the analysis of the dithers that are
to induce minor loops in the nonlinear hysteretic stress/strain relationship.
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