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Abstract

The influence of a weak high-frequency acoustic signal (a dither) on the absorption and velocity of a stronger harmonic wave
in a medium with hysteretic quadratic nonlinearity is analysed. It is demonstrated that, depending on the relative phase of the
stronger wave and the weak dither, either the effects of the induced absorption or of the induced transparency are possible.
A physical explanation of the effects proportional to the dither amplitude is proposed. It is predicted that the absorption of the
acoustic wave by a noise in the materials with hysteretic quadratic nonlinearity is proportional to noise intensity.
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1. Introduction

There are currently two important tendencies in the evaluation of the mesoscopic materials (such as rocks,
polycrystalline metals, ceramics, etc.) by the methods of the nonlinear acoustics. First, the researchers use more
and more elaborated methods and principles for the analysis of the acoustic nonlinearity of these materials. The
experiments on the self-action of harmonically pumped acoustic wave in the resonators [1-3] are replaced by
the experiments on mixing the acoustic waves of different frequencies [4—10]. The latter experiments provide,
in particular, an access to the information on the dispersion (i.e., the dependence on frequency) of the acoustic
nonlinearity [10,11]. Second, a consensus among the researchers on the importance of the dissipative nonlinearity
in the mesoscopic materials is growing [4—11]. Different manifestations of the interaction and/or of the self-action
of the acoustic waves due to possible nonlinear absorption has been reported in rocks [3,12,13], polycrystalline
metals [1,4-10], sand [11-14] and even in the homogeneous materials containing individual cracks [15-17].
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However, there is no consensus on the physical mechanisms of the dissipative nonlinearity in the mesoscopic
materials. There are purely phenomenological models [12-14,18], there are models introducing nonlinear
dissipation in the acoustically induced motion of the dislocations [10], there are models attributing nonlinear
dissipation to soft mechanical elements in the mesoscopic materials [9,19]. In particular, it might be expected that
thermoelastic absorption of sound by soft contacts between the crack lips or between the grains (in polycrystalline
materials) contributes to nonlinear dissipation. The nonlinearity of the latter mechanism is due to the modulation
of the contact dimensions by the acoustic waves. Finally, it is well established that in the mesoscopic materials
the hysteretic quadratic nonlinearity plays an important role. In particular, the variation of the acoustic wave
decrement proportionally to the wave amplitude is commonly attributed to the hysteretic quadratic nonlinearity
[1,3]. Evidently the hysteretic nonlinear absorption should contribute to the processes of frequency mixing as well.

In the analysis of each particular experiment the different contributions to nonlinear dissipation listed above
should be compared. For this comparison the role of the different mechanisms of the dissipative nonlinearity
in various possible processes should be studied. This research is currently in progress. The absorption of a
weak ultrasonic pulse under the action of an intense low-frequency pumping wave has been analysed both
in the framework of the modified Granato—Lucke theory [10] and as being caused by the hysteretic quadratic
nonlinearity [20]. General theoretical predictions for the induced absorption or amplification of a small amplitude
acoustic wave of an arbitrary frequency in the field of a large amplitude harmonic pump wave (traveling or standing)
in the materials with hysteretic quadratic nonlinearity has been formulated [20]. In the following a complementary
theory of a weak signal influence on a strong wave (due to the presence of the hysteretic nonlinearity) is developed.

2. Theory

The hysteretic quadratic nonlinearity is known to be even (quadratic) in acoustic wave amplitude but have a
character (symmetry) of an odd nonlinearity in its physical manifestations [1,3,20-23]. An elementary scattering
process due to the interaction of a weak signal at a cyclic frequenend of an amplitude with a strong wave
at a frequencw, and of an amplitude! is controlled by the following conservation law [20,25]

o =tw; —2mw,, )

wherem =0, +1, £2, ... is the integer number and denotes the frequency of the scattered wave. The selection
rule in Eq. (1) indicates that nonlinear scattering in a medium with hysteretic quadratic nonlinearity is a multi-
phonon process. The scattered phonon is combined of a phonon from a weak signal wavesapd@fi@ns from

a strong wave. The amplitude of the wave scattered in process (1) is proportional to the product of the weak wave
and the strong wave amplitudés a A). The selection rule in Eq. (1) is valid for the self-action of the strong wave

as well. In the latter case, = w, and form = 2 the scattered wave frequen®yis equal to the stronger wave
frequencyw,: w = *w, F 2w, = Fw,. This provides a direct mechanism for the self-action due to a single act

of the nonlinear scattering [20,21]. The variatiam of the stronger wave amplitude due to the self-scattering is
proportional to the square of its own amplituae A2) [21,24]. Consequently far < A the influence of a signal

on the stronger wave is at least a factonpfi <« 1 weaker in comparison with the strong wave self-action.

However the effects of the order@f A « 1 are possible not for all relative values of the weak-wave and strong-
wave frequencies. Actually it is impossible to get a scattered wave at the frequency of the stronger wave (i.e., to
satisfy Eq. (1) withw = £w),) if the weak-wave frequenay, differs from the odd harmonics of the strong-wave
frequency. The processes of the first orded jd <« 1 are allowed only for

ws=02m+Dw,, m=0+1+2 ... (2)

The latter requirement is a one more manifestation of the odd character (symmetry) of the hysteretic quadratic
nonlinearity. A signal wave at a frequency that differs from Eq. (2) might influence the stronger wave only through
the scattering processes, which are less effective than those described by Eq. (1). For example if the signal wave
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is an even harmonic of the strong wakg = 2mw,) then modifications of the strong wave will be at least of the
order of(a/A)? < a/A < 1.

In the following, we analyse the pump wave modifications caused by the presence of a weak wave at one of the
pump wave harmonics) = nw,, n = +1, £2,...). The results obtained confirm the presented above qualitative
ideas. For the odd harmonics £ 2m + 1, m = £1, +2,...) the variations of the stronger wave amplitude and
velocity proportional to weak-wave amplitude are possible. For the even harmanric®§, m = +1, £2, ...) the
variations in the stronger wave induced by the weaker one are proportional to the square of the signal amplitude.
These latter weak effects are evaluated just for comparison with the recent predictions obtained both numerically
and analytically for the fundamental wave interaction with its second harmonic [26].

Both the induced variations of the fundamental wave absorption and velocity are evaluateg o, the
total acoustic field composed of the stronger and the weaker (high-frequency) waves is periodic with a period
2r /wp. In this case there is no need to apply the mathematical formalism of successive approximations developed
in [21,25] for the mixing of the incommensurate frequencies (that treats the interaction process at the time interval
fromr = —ootot = c0). Asimpler iterative procedure at a single period of the acoustic fielt/ v, <t < 7/w))
is applied.

It should be mentioned that a high-frequency signal acting on a nonlinear system is commonly called the “dither”
[27,28]. The dithers have been used to modify the behaviour of different systems (to compensate for the effects of
the Coulomb friction, dead zones in hydraulic valves and hysteretic effects, as well as for the stabilisation of the
systems [27,28]). Commonly the injection of a dither is supposed to smooth the discontinuities in the interactions
(in particular the discontinuity of friction at low velocity) [28]. In this terminology the analysis presented below
for |n| > 2 might be called the theory of “dithering” of a material with hysteretic quadratic nonlinearity.

Let us assume that in the presence of a stronger wave and a weaker dither the localisti@imaterial is
described by

s = Acost + acognb + ¢). (3

Here6 = w,t is the nondimensional time variable apds the phase shift of the dither relative to the stronger-
wave phase. The materials with the hysteretic quadratic nonlinearity are known to exhibit a property of the end-
point memory [29,30]. For the purposes of the current analysis this property can be formulated as follows. The
material remembers the maxima and the minima in the strain loading history and the nonlinear contribution to
elastic modulus depends on how the current strain vais@ositioned relative to the different memorised extrema

se. It should be mentioned here that the information on the extremum could be erased in the process of subsequent
loading [26,29-31] when the strain, reaching this memorised extremum, does not change the sign of the strain
rate. In other words, the memory of an extremum is erased if the loading passes.vdluedoes not have at

this former extremum a turning point. In practice, the nonlinear contribufigtio the modulus due to hysteretic
guadratic nonlinearity abruptly diminishes to zero when the strain exhibits an extremum in the loading history. The
subsequent variation of the nonlinear contribution to the modulus is proportional to the deviation of the strain from
its value in the latest extremum

JdoH
as
HereE is the linear elastic modulusy is the characteristic nondimensional parameter of the hysteretic quadratic
nonlinearity [21,22,32], andy denotes the corresponding nonlinear contribution to stress. Note that Eq. (4)
predicts softening of a mesoscopic materi&li(< O for Ay > 0) in accordance with multiple experimental
observations [1-3]. The relation (4) is valid until the loading reaches the subsequent extremum in its history unless
the system passes one of the previously memorised extrema. In the latter case the relation in Eq. (4) should be
modified after the moment when the strain passes this former extremum (i.e., when the strain reaches a memorised
maximum and keeps increasing or it reaches a memorised minimum and keeps decreasing). See, for example,
Refs. [26,31].

En= = —hHE|s — s.|. (4)
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In order to get with the help of Eq. (4) a description of the modulus variation over a complete wave period it is
necessary to find the extrema in the loading history (3). The end pgjrtsrresponding to these extrema are the
solutions of the equation

as . a .

2 = A[sm@ + AnSIﬂ(nG + (p)] =0. (5)

It can be verified that under the conditiofidA < 1/12 Eq. (5) has only two roots over a period (corresponding to

an absolute maximum and an absolute minimum of strain)aFFar> 1/n2 additional roots may appear for some
values of the phase shift This corresponds to the appearance of the local extrema in addition to the absolute ones
(to the formation of the internal, minor loops in the hysteretic stress/strain relationship). The influence of the minor
loops formation on the stronger wave has been studied recently both numerically and analytically in the @ase

¢ =0, 7/4 [26]. The loop in the latter case is formed when the amplitudes of the stronger wave and the weaker
one are not very differentif A o< 1). The present analysis is devoted to the influence of a weak signal on a strong
wave @/A < 1) in the absence of the minor loops induced by dithering. Only the loading histories with a single
maximum and a single minimum over a wave period are considered. Moreover we assume the condition

<1 )
to be fulfilled. The inequality in Eq. (6) keeps the system sufficiently far from the regime of minor loops formation.
Importantly under the condition (6) the positions of the strain extrema can be evaluated approximately as

2
O = mm + Aby ~mm — (—1)”’(”*1)%11 sing + (%) nsing cosy. (7)

Herem =0,+1,42,...,6,,4+2 — 6, = 27, andA6,, denotes the shift of the extremum induced by the dither. The

strain valuesé”’) in the extrema are also modified by the dither

2.2
s = 56m) ~ AL (=" + (~" S cosp + (-7 (5 ) Losirte . (8)
A A) 2
Only the terms up to the second order in the small paramgtérk 1 are retained in Egs. (7) and (8).
With the information on the extrema in hands the description of the nonlinear modulus behaviour is
straightforward. During the periagl 1 <6 < 61 Eq. (4) predicts the following dynamics @iy

s—s5_1, 0-1<6 <0,
so—s, 6p<0O<01.

Ey=—hyE { 9)

The integration of Eq. (9) over strain provides the description of the hysteretic stress/strain relationship

1
OH(O-1) = ShHE(s —s-1)%  0-1<0 <6,
oH(B0) + ShHE(s = 50)? = 0n(0-1) = ShHE[(s0 = 5-1)? = (s =50)?], 6o <O <1,

In the derivation of the second part in Eq. (10) the continuity of stress in the end-poiéits-(@&f) has been taken
into account.

The hysteretic nonlinear absorption is characterised by the energy Ivdges § o (s) ds over a wave period
in a unit volume. Note that the tersn6_1) in Eq. (10) (which does not vary over a wave period) does not contribute
to dither-induced modifications of the energy = § o1(s) ds dissipated in the material. Thus for the purposes
of the current study the evaluation of temi9_1) is not necessary. To evaluate the hysteretic loas#s of the
stronger waveA cosh, the total stressy(s) in Eq. (10) should be considered, but only the contribution of the
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stronger wave tds should be includedds = — A sind d6)
01
AWy =—A / oH(A cosd +acognb + ¢))sind do. (11)
0_1

To arrive to the traditional form of the losses presentation the energy density in the strong wave averaged over a
wave period is found

)
E [ ,  EA
Wi=— [ (AcoH)“db = —
2
0_1

and the acoustic decrement of the stronger wave is defined in the conventional séhse-liyW,/(2W1). The
result of the decrement calculation can be presented in the form

2_
D1 ~1+([1- (—1)”]M COsy (ﬂ)

D1(a =0) 2(n2 —4) A
3 cos2p) _(=1)"m2+1 5 . a\?
_4_1{ R i coS ¢ — 2n sm@p}(;) : (12)

where D1(a = 0) = (4/3)hy A is the amplitude-dependent decrement of the strong wave in the case of its self-
action (i.e., in the absence of a dither).
The modification by a dither of the modulus for the stronger wave can be evaluated as [33,34]

0
12 [
AE] = e / oH(A cOS + acosnd + ¢)) cosh db. (13)
T
0_1

In Eqg. (13) in comparison with Eq. (11) césppears under the integral instead oftsiliVith the help of Eq. (13)
the stronger wave velocity modificatiaxc; induced by the dither can be evaluated and presented in the form

Acy N a1 cose 2 n2—2 . a
Acl(a=0)Nl+[l_(_l) ]{ 2 +;n(n2—4) SIH(p}(Z)

. . 2
+{w+£[ 2 +ED i|COS(p}nZSing0<%). (14)

2 an|dn?2 -1 n2—1

Here Aci1(a = 0) = —hncoA denotes the reduction of the stronger-wave velocity due to its self-actos,the
velocity of a linear acoustic wave (i.e., of a wave of an infinitely small amplitude). Both in Eq. (12) and in Eq. (14)
only the terms up to the second order in a small paramgtérz 1/n2 < 1 are retained.

The analytical results (12), (14) for the decrement and the phase velocity confirm the conclusion derived earlier
on the basis of the selection rule (1). Only the dithering at frequencies equal to the odd harmonics of the stronger
wave leads to its modification proportional to the dither amplitude. Neglecting in Eq. (12) and in Eq. (14) for the
casen =2k +1 (k =0, £1, +2, ...) the terms of the order af:/A)? this effect is described by

D1 2%k2+ 2k —1 (a)

— = ~1 . —_
Dia=0 T °@_-npa+3 °¥\a

Aci 4 (2k+1)2 -2 : a
Aca=0 1t {Cos‘p P D&%+ D)2+ 3 S'n‘”} (Z)' (16)

(15)
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Fig. 1. The normalized total strain fielg A in the absence of any dithering (continuous curve, the strong wave= cost), when dithering

is accomplished at the second harmonic of the strong wave (dash-dotted gutve, cosd + (1/5) cog29)), and when the dithering is
accomplished at the third harmonic of the strong wave (dashed oytes cosd + (1/5) cog36)). The modulation of the total acoustic field
amplitude proportional to the dither amplitude is achieved only in the latter case. This leads to the variation of the strong wave decrement and
the phase velocity proportional to the dither amplitude.

The physical interpretation of the result in Eq. (15) can be obtained by noting that in accordance with Eq. (7)
a dither at frequency; = (2k + 1)w, does not modulate the time interval between the subsequent extrema
(AB,, — ABy,—1 =0 forn = 2k + 1), but it strongly influences the amplitude of the total acoustic field. Actually,
from Eq. (8) it follows that in the case= 2k + 1 the acoustic wave amplitude is equal to

1 N a
§|sm —Sm—1| =1+ ZCOS(p. a7
Here only the contribution up to the first order in small parameter < 1 is retained. Comparison of Eq. (17) and
Eqg. (15) demonstrates that the variation in the stronger wave decrement is proportional to the variation of the total
acoustic field amplitude. The most important is that both variations exhibit the same dependence on the relative
phasep between the dither and the stronger, low-frequency wave. It can be concluded that the influence of the dither
on the low-frequency stronger wave can be of the order/ef if the dither is able to induce the modulation of
the strong-wave amplitude of the same or@gA. In contrast to the case; = (2k + 1w, a dither at a frequency
ws = 2kw, modulates the total acoustic amplitudg — s,,—1|/2 only at the levekx (a/A? < a/A <1 (asit
follows from Eg. (8)). Although in the case= 2k the magnitude of strain in the individual extremyaands,,_1
is modulated at the levek a/A this (in the absence of the variation in the amplituge— s,,—1|/2 of the order
of a/A) contributes to the decrement variation only in the next order of smallness. In Fig. 1 the total acoustic field
is presented in the absence of the dithering, and also when the system is dithered at frequea@es, and
ws = 2wp. The phase is chosen to be equal to zero. In order to enlighten the discussed effects the pamgmeter
in Fig. 1 is chosen to be rather large (its value does not satisfy the strong inequality (6)). However, Fig. 1 provides
a clear and physically correct qualitative illustration of the difference in the influence of the dithers at odd and at
even harmonics of the strong wave on the total acoustic field.

In accordance with Eqg. (15) the dither at an odd harmonic can induce either additional absorption @f @ps
or the transparency (if cgs< 0). For ¢ = £ /2 the decrement variations of the order«fA are absent. In
accordance with Eq. (16) the dependence of the induced variation in the stronger-wave velocity on the phase
differs from that for the absorption. Because of this the modulation of the velocity can dominate over the modulation
of the decrement (in the vicinity op = +7/2, for example). At the same time linear irf A variation in the
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stronger-wave velocity disappears for the critical phase
/4
((2k +1)2 —2)/((2k — 1)(2k + 1) (2k + 3)) }
Consequently, for the phases negy the induced variations of the decrement dominate. For the high-frequency
dithering (withk > 1) the results in Egs. (15) and (16) can be simplified

D1 a Acy a
——— =143 — — 1 — . 18
Di(a =0) + COSP(A)’ Aci(a =0) + oSy (A) (18)

The asymptotic formulas (18) (valid férs- 1,a/A < 1/4k?) demonstrate that the influence of the high-frequency
dithers on the wave velocity is comparable to its influence on the wave amplitude for all pgssible

The influence of a dither at a frequency equal to an even harmonic of the strong wave is essentially less efficient.
Forn =2k (k=0,+£1,£2,...) Egs. (12) and (14) take the form

Yer = — arcta

D1 3 cos2p) _4k2+1 5 . a\?
— ~1-{1- 2 coS ¢ — 8k?sirf o { [ — 19
D1(a=0) 4{ Te— 1 “amz_19%¢ STepa) (19)
Acy sing 2 1 1 s . (a)?
— =1 —_ —_— — CcO 4k“ sin — . 20
Acy@=0) +{ 2 +nk|:16k2—1 21| ?\a (20)

The solution in Eg. (19) reproduces the results obtained earlier [26] both numerically and analyticaly igr
¢ =0, /4. In particular, the effect of the induced transpareficy(a/A)?) is confirmed forp = 0 and the effect
of the induced absorptiors{ (a/A)?) is confirmed forp = /4. In the regime of the high-frequency dithering
(k > 1) the results in Egs. (19) and (20) can be simplified:

P itesite (4 ’ A 14 usite (L ’ (1)
Di(a=0) Y\a)° Acw@=0 P\a)-

The asymptotics in Eq. (21) (valid fdr> 1,a/A <« 1/4k?) demonstrate once again the comparable influence of
the high-frequency coherent excitations on the stronger-wave absorption and velocity for all possible phases.

3. Discussion

The developed theory provides an important time-domain criteria necessary for the effective influence of a weak
signal on a stronger wave. Earlier [20,21,25] the criteria of the effective frequency mixing in the materials with
hysteretic quadratic nonlinearity has been formulated in the frequency-domain as an energy conservation law in
multiphonon processes (see Eg. (1)). The results presented in Section 2 indicate that in the time-domain the same
criteria can be formulated in terms of the amplitude modulation of the total acoustic field. The modulation of a
stronger wave by a weak signal is proportional to the signal amplitude and the signal is capable to modulate the
total field amplitude efficiently (i.e., also proportionally to the signal amplitude). This is a necessary condition for
the efficient modulation of both the decrement and the velocity of the stronger wave.

The developed theory can be applied to derive some preliminary conclusions on the propagation of the stronger
wave in the presence of the acoustic noise. It is well known that in materials with classical (elastic) quadratic
nonlinearity noise induces additional absorption of acoustic waves proportional to noise spectral intensity [35,36].
From the solutions derived in Section 2 it follows that in the materials with hysteretic quadratic nonlinearity the
interaction of the stronger wave with the noise can lead to absorption that is also proportional to noise spectral
intensity. Assuming that in the stochastic acoustic field (in the acoustic noise) the phase of a spectral component
varies chaotically (homogeneous distribution of phase in the intervak ¢ < ) it can be verified that the strong-
wave modifications proportional 1o/ A in Eq. (12) disappear in averaging overr < ¢ < . Only the decrement
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variations proportional téaz/A)? survive in Eq. (12) after averaging

D1 . 3, (='m?+1 a\?
Dl(a=0)~1+?1{"_ n2 1 _1}<Z)' (22)

In accordance with Eq. (22) the interaction of the spectral components of the noise with the stronger wave always
induces for this wave an additional absorption (the coefficient in front ofdhid)? in Eq. (22) is positive for
all n).

To finish the discussion it is worth noting that in engineering the term “dither” is also used to refer to
unintentional noise which may be picked up by a system [27]. Moreover, the coherent signals injected in a
nonlinear system are sometimes referred to as artificial dithers. So, the discussed above interaction of the low-
frequency stronger wave with a noise is just a particular case of dithering the systems with the hysteretic quadratic
nonlinearity.

4. Conclusions

The influence of an artificial weak dither on the absorption and velocity of a stronger harmonic wave in a
medium with hysteretic quadratic nonlinearity is analyzed. It is demonstrated that due to odd symmetry of this
acoustic nonlinearity the modifications of the stronger wave by the dither at frequencies equal to its odd harmonics
is proportional to the dither amplitude. Depending on the relative phase of the low-frequency strong wave and the
dither either the effects of the induced absorption or of the induced transparency are possible. The induced effects
proportional to the dither amplitude are due to the capability of the dither to modulate the amplitude of the total
acoustic field proportionally to the dither amplitude. The modifications of both the absorption and the velocity of
the stronger wave by a dither at a frequency equal to an even harmonic of the strong wave is proportional to the
square of the dither amplitude. It is predicted that the absorption of the acoustic wave by a noise in the materials
with hysteretic quadratic nonlinearity is proportional to noise intensity.

An interesting perspective for the extension of the developed theory is the analysis of the dithers that are capable
to induce minor loops in the nonlinear hysteretic stress/strain relationship.

References

[1] V.E. Nazarov, L.A. Ostrovsky, |I.A. Soustova, A.M. Sutin, Phys. Earth Planet. Inter. 50 (1988) 65.
[2] R.A. Guyer, P.A. Johnson, Phys. Today 52 (1999) 30.
[3] R.A. Guyer, J. TenCate, P. Johnson, Phys. Rev. Lett. 82 (1999) 3280.
[4] V.E. Nazarov, Sov. Phys. Acoust. 37 (1991) 432.
[5] V.E. Nazarov, Acoust. Lett. 15 (1991) 22.
[6] A.M. Sutin, V.E. Nazarov, Radiophys. Quantum Electron. 38 (1995) 109.
[7] V.E. Nazarov, A.B. Kolpakov, J. Acoust. Soc. Am. 107 (2000) 1915.
[8] V. Zaitsev, P. Sas, J. Vibration Control 6 (2000) 803.
[9] V. Zaitsev, P. Sas, Acustica—Acta Acustica 86 (2000) 429.
[10] V.E. Nazarov, Acoust. Phys. 47 (2001) 438.
[11] V.E. Nazarov, A.V. Radostin, I.A. Soustova, Acoust. Phys. 48 (2002) 76.
[12] V.E. Nazarov, S.V. Zimenkov, Acoust. Lett. 16 (1993) 218.
[13] V.E. Nazarov, Acoust. Phys. 41 (1995) 305.
[14] V.E. Nazarov, A.V. Radostin, Yu.A. Stepanyants, Acoust. Phys. 47 (2001) 733.
[15] V.Yu. Zaitsev, V. Gusev, B. Castagnede, Ultrasonics 40 (2002) 627.
[16] V.Yu. Zaitsev, V. Gusev, B. Castagnede, Phys. Rev. Lett. 89 (2002) 105502.
[17] V.Yu. Zaitsev, V. Gusev, B. Castagnede, Phys. Rev. Lett. 90 (2003) 075501.
[18] V.Yu. Zaitsev, V.E. Nazarov, Acoust. Phys. 44 (1998) 305.
[19] V.Yu. Zaitsev, V.E. Nazarov, |.Yu. Belyaeva, Acoust. Phys. 47 (2001) 178.



V. Gusev, V.V Zaitsev / Physics Letters A 314 (2003) 117-125

[20] V. Gusev, Phys. Lett. A 271 (2000) 100.

[21] V. Gusev, C. Glorieux, W. Lauriks, J. Thoen, Phys. Lett. A 232 (1997) 77.

[22] V. Gusev, W. Lauriks, J. Thoen, J. Acoust. Soc. Am. 103 (1998) 3216.

[23] V. Gusev, Acoust. Lett. 22 (1998) 30.

[24] V. Gusev, Wave Motion 33 (2001) 145.

[25] V. Guseyv, J. Acoust. Soc. Am. 111 (2002) 80.

[26] V. Aleshin, V. Gusev, V.Yu. Zaitsev, J. Comput. Acoustics, submitted for publication.
[27] D.P. Atherton, Nonlinear Control Engineering, Van Nostrand, New York, 1975.

[28] B. Armstrong-Hélouvry, P. Dupont, C. Candas de Wit, Automatica 30 (1994) 1083.
[29] D.J. Holcomb, J. Geophys. Res. 86 (1981) 6235.

[30] R.A. Guyer, K.R. McCall, G.N. Boitnott, Phys. Rev. Lett. 74 (1995) 3491.

[31] V. Gusev, Acustica—Acta Acustica 89 (2003) 445.

[32] V. Gusev, V. Aleshin, J. Acoust. Soc. Am. 112 (2002) 2666.

[33] A.S. Nowick, Prog. Metal. Phys. 4 (1953) 1.

[34] L.J. Teutonico, A.V. Granato, K. Lucke, J. Appl. Phys. 35 (1964) 220.

[35] P.J. Westervelt, J. Acoust. Soc. Am. 59 (1976) 760.

[36] O.V. Rudenko, Sov. Phys. Usp. 29 (1986) 620.

125



	Acoustic dither injection in a medium with hysteretic  quadratic nonlinearity
	Introduction
	Theory
	Discussion
	Conclusions
	References


