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The numerical scheme for the analysis of the acoustic wave transformation in materials with nonlin-
earity hysteresis and end-point memory is developed. Both numerical and analytical predictions are
obtained concerning mixing of a wave at fundamental frequency (ω-wave) and a wave at doubled
frequency (2ω-wave) in the materials with hysteretic quadratic nonlinearity. The observed wave
spectrum broadening is found to be in qualitative agreement with the selection rules for the multi-
phonon processes in this type of materials. The predicted transformation of an initially complex
wave (with four extrema over a period) into a simplex wave (with two extrema over a period) in non-
linear propagation is found to be one of the manifestations of the nonlinear hysteretic absorption.
It is demonstrated that at short propagation distances the interaction of the ω- and 2ω-waves is
mainly through the mechanism of the nonlinear hysteretic absorption and is not strongly influenced
by the process of higher harmonics generation and their inverse influence on the input waves. The
regimes of the induced and self-induced transparency are predicted. The influence of the transition
from the simplex wave to complex wave emission (or vice versa) on the processes of the induced
absorption and transparency is identified.

Keywords: Hysteresis; nonlinear acoustics; two frequency mixing induced transparency; induced
absorption.
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1. Introduction

Stimulated by pioneer acoustic experiments in vibrating metallic rods1,2 there is still a sta-

ble interest to the investigation of the nonlinear wave phenomena in materials exhibiting

hysteresis in their nonlinear properties. The nonlinear acoustic experiments conducted in

different type of materials (including, for example, polycrystalline metals,1–4 rocks5–8 and

ceramics9) lead to the conclusion on the universality of the observed nonlinear acoustic

effects in the sense that they are characteristic of a large class of micro-inhomogeneous

materials.2,10 An additional term “mesoscopic” for the notation of these materials has been

introduced quite recently.10 This term emphasizes that the acoustic nonlinearity of the ma-

terial is due to some mechanical features in its structure, which are significantly bigger than

the interatomic distances, but significantly smaller than the acoustic wavelength. Hysteresis

in the strain–strain relationship is, however, only one feature of a rich variety of remarkable

nonlinear properties of micro-inhomogeneous (mesoscopic) materials.8,11–13 Another fasci-

nating feature is the property of these materials to memorize their mechanical (acoustical)

loading history.14,15 For example, the current behavior of the material depends on the mag-

nitude of the latest extremum in the stress/strain history, furthermore, some of the other

extrema in the loading/unloading history are also memorized (the end-point memory16–19).

In particular, the material always remembers the extremum previous to the latest one, as

well as the absolute maximum and the absolute minimum of the loading history.

Both the end-point memory and the nonlinearity hysteresis can be success-

fully phenomenologically modeled using the so-called Preisach-Mayergoyz (PM) space

formalism.16–18 This is a mathematical tool elaborated by Krasnoselskii19 for a phys-

ical model proposed by Preisach for magnetic hysteresis.16 A theorem important for

the representation of actual hysteresis nonlinearities by Preisach’s model was proven by

Mayergoyz.17,18 In the PM-space approach it is assumed that the response of a material

to external excitation is a linear superposition of the individual responses of hysteretic

mesoscopic mechanical elements (see the next section for the details).

In the theoretical analysis of the nonlinear acoustic phenomena in the framework of the

PM-space phenomenology the mathematical complexity is caused rather by the memory

effects than by the hysteresis in nonlinearity. If the acoustic wave (incident on a mesoscopic

material) induces sufficiently simple loading history then complete analytical description of

the nonlinear wave evolution is possible.20–22 Exact analytical solutions are obtained20–22

for the so-called “simplex” waves,23 i.e. periodic waves with a single maximum and a single

minimum over a period. Qualitatively this became possible because there were only two end-

points (extrema) to be kept in memory during wave profile transformation. If an acoustic

wave contains over a period additionally to the absolute extrema also some local ones

(“complex” wave23), then the problem of memorizing and erasing of the end-points in the

process of wave propagation becomes hardly tractable analytically. Here is exactly a point

where numerical modeling should help us in understanding the fundamental laws of the

nonlinear wave interactions in mesoscopic materials.
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In the present paper we develop a numerical scheme for the evaluation of the nonlinear

propagation of an arbitrary acoustic signal and present the results of this simulation for

the initially biharmonic signal. The acoustic wave at the boundary is composed of two har-

monic waves at a fundamental (ω) and doubled (2ω) frequency. We simulated the nonlinear

transformation of the wave profile for different relative amplitudes and phases of the initial

waves at ω and 2ω as well as the transformation of the frequency spectrum of the total wave.

Our results indicate an important contribution of the forth harmonic (4ω) to the spectrum

of the signal. The transformation of a complex wave into a simplex wave in the nonlinear

propagation is demonstrated and the dependence of the process on the relative phase of

the ω- and 2ω-waves is explained. Peculiar regimes of the induced transparency (where the

increasing amplitude of the ω(2ω)-wave leads to fall in the absorption of 2ω(ω)-wave) are

predicted both numerically and analytically. The regime of the self-induced transparency

(where in the presence of the ω-wave the increasing amplitude of the 2ω-wave induces fall

in the absorption of the 2ω-wave) is also predicted. These predictions are explained as a

manifestation of the nonlinear hysteretic absorption in the case of two-frequencies mixing.

The role of the transition from the emission of the simplex wave to the emission of the

complex wave (or vice versa) in the process of the induced absorption and transparency is

identified.

The article is organized as follows. In Sec. 2 we remind the mathematical formalism

of the phenomenological description of nonlinear acoustic wave propagation in mesoscopic

materials. In Sec. 3 the numerical integration scheme is presented and tested against the

analytical results available for the nonlinear propagation of the initially sinusoidal wave.

Section 4 provides the results of the numerical modeling of the simplex and complex waves

propagation in the case of the biharmonic initial signal. In Sec. 5, on the basis of the

analytical analysis the role of the nonlinear hysteretic absorption in the phenomena under

the investigation is revealed. The article is terminated by the discussion (Sec. 6) and the

conclusions (Sec. 7).

2. Evolution Equation for Medium with Hysteretic Nonlinearity

We start with the wave equation of propagation of a plain acoustic wave:

ρ0

(

∂2u

∂t2
− c2

0

∂2u

∂x2

)

=
∂σH

∂x
,

written for the particle displacement u (parallel to the direction of the wave propagation).

Here c0 is the sound velocity, σH is a contribution to the stress due to presence of hysteretic

elements. So in this model we do not take into account “classical” nonlinearity, concentrating

on hysteretic nonlinearity only.20–22

Using the well-known method of a slowly varying wave profile (multiple scale technique)

described, for example, in Ref. 24, we arrive to the “shortened” (evolution) equation for

slowly varying profile of strain s ≈ ∂u/∂x in the wave propagating in the positive direction
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of x-axis

∂s

∂x
+ v (x, τ)

∂s

∂τ
= 0 . (2.1)

Here τ = t − x/c0 denotes the “fast” retarded time, x is the “slow” evolution coordinate,

and

v(x, τ ) = − 1

2ρ0c3
0

∂σH

∂s
. (2.2)

Equation (2.1) in partial derivatives is known to be equivalent to a system of two ordinary

differential equations24–26: ds/dx = 0, dτ/dx = v. Consequently from the physics point of

view the function v(x, τ) describes the time shift dτ of a point of the wave profile in the

accompanying coordinate system with increasing propagation distance dτ = vdx. Although

v(x, τ) has the dimension of the inverse velocity we will, following the tradition,26 call it the

“velocity” of the wave profile point on the plane (s, τ). In fact it is possible just from the

beginning to choose instead of the slow coordinate x a slow time t = x/c0 simultaneously

using a fast coordinate ξ = x − c0t = −c0τ instead of the fast time.26 Then Eq. (2.1)

transforms into ∂s/∂t − c2
0v∂s/∂ξ = 0 and the coefficient in front of the second term

has not only a sense of velocity, but also the dimension of the velocity. However here we

prefer to analyze wave evolution as a function of the propagation distance and not of the

propagation time (although the two descriptions are directly related) but keeping the term

“velocity” for v(x, τ). Please note that, surely, it is also possible to use in the multiple scale

approach for the derivation of the evolution equation both (slow and fast) variables with the

same dimension of length (or time). The differences between all possible forms of evolution

equation can be eliminated by a suitable choice of the normalized nondimensional variables.

In accordance with Eq. (2.2) the velocity v(x, τ) is directly proportional to the derivative

∂σH/∂s of the stress–strain relationship σH(s). Consequently one should add an equation of

state (i.e. stress–strain relationship) in order to complete the model. Following the ideas of

the Preisach–Mayergoyz space formalism we assume here that the nonlinear contribution to

stress can be represented by a linear superposition of the contributions σM from individual

mesoscopic hysteretic mechanical elements:

σH(s(x, τ)) =
∑

M∈x

σM . (2.3)

Here subscript M marks mechanical elements in the elementary volume at a coordinate x.

For the application of the continuous elasticity theory to the analysis of the wave propaga-

tion stress should be locally defined in each elementary volume (point) with the dimensions

much less than the acoustic wavelength. At the same time it is assumed that an elementary

volume contains a huge number of the hysteretic mechanical elements with the dimensions

significantly exceeding inter-atomic length scale (mesoscopic elements).

Equation (2.3) formally corresponds to the action of the noninteracting mechanical el-

ements in the elementary volume in parallel (summation of forces). The derivation of the

stress/strain relationship for the mesoscopic material can also be achieved starting from the
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statement that the change of the elementary volume in the material is a result of a linear

superposition of the volume changes exhibited by the individual mechanical elements.15

The latter statement formally corresponds to the action of the noninteracting mechanical

elements in the elementary volume in sequence (summation of the displacements). Using

Eq. (2.3) and the strain–strain PM-space we derive (as it is demonstrated in Ref. 21 and

later here) the nonlinear dependence of stress on strain, while the summation of the volume

changes implies the utilization of the stress-stress PM-space15 and leads to the dependence

of strain on stress. The latter should be inverted to get the dependence of stress on strain

required by Eq. (2.2). Importantly in the framework of the nonlinear acoustics these two

approaches provide the equivalent results.

It is worth reminding here that nonlinear acoustics by its definition investigates waves

with low acoustic Mach numbers. In nonlinear acoustics the deviation fNL(σ) of the

strain/stress relationship s(σ) from the Hooke’s law is always small: s = σ/E + fNL(σ),

|fNL(σ)| � |σ/E|. Here σ and E denote the stress and the elastic modulus, respectively.

Due to |fNL(σ)| � |σ/E|, in order to transform s(σ) relationship into σ(s) relationship

(which is more convenient for deriving the acoustic wave equation) it is sufficient to use the

Hooke’s law approximation s ∼= σ/E for the inversion of the nonlinear term12:

σ ∼= E[s − fNL(Es)] .

It is important that the functional form of the nonlinear terms in both s(σ) and σ(s)

relationships is the same in nonlinear acoustics. As a consequence for nonlinear acoustics

there is no difference which one of the PM-spaces with homogeneous distribution of the

elements (i.e. stress-stress or strain-strain) is used for the modeling of the hysteretic nonlin-

earity. For the direct modeling of the strain/stress relationship the stress-stress PM-space

should be applied. We prefer to use strain-strain PM space because it provides directly the

stress/strain relationship for the substitution in the wave equation.21

The goal of further consideration is to analyze the typical influence of hysteretic ele-

ments on the nonlinear distortion of signal shape. So let us consider the simplest hysteretic

function of a rectangular shape for individual mesoscopic element (Fig. 1). Here we note

that the hysteretic element used by us here in the strain-strain PM-space transforms (with

an accuracy of the second order of smallness) in the hysteretic element used by others in

the stress-stress PM-space15 by applying the Hooke’s relation between s and σ (that is via

the substitution of σ/E for s and of Es for σ at the axes of Fig. 1). This once again ensures

the equivalency of the two approaches in the framework of the nonlinear acoustics.

The introduction of the model element means that we have turned from study of a com-

plicated system consisting of multiple microscopic cracks (or defects) to the consideration

of fictional elements, that can be found in one of two states: “open” or “closed” (one de-

notes these states as S(M) =“O” and S(M) = “C”, respectively). The parameters of such

an element are just σc, σo, sc, so. Here so is a value of strain at which the element opens

while we increase s, and sc is a value needed to close it if strain decreases (sc < so). We

also admit instantaneous switching.
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Fig. 1. A hysteretic model of an individual 
mesoscopic element Μ. The element is 
parameterized by values of so, sc, and ∆σ=σc-σo. 

Fig. 2. Illustration of switching in PM-space. The pictures 
0-15 (a) are patterns in (so,sc)-PM-space corresponding to 
the points on the strain curve s(τ) below (b). The arrows 
indicate the direction of switching. Areas containing open 
elements are plotted in light gray, areas containing the 
closed ones are dark gray. The “switching lines” are marked 
by thin lines in each portrait, the “switching sections” are 
thicker. The pictures 2, 5, 7, 9, 12, 15 correspond to the end 
points (local extrema of s(τ)). 
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and then calculate the velocity in Eq. (2.2). Note that at each value of strain after 
calculation of the derivative given by Eq. (2.4) we must keep track of the state ( )S M , 
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Fig. 1. A hysteretic model of an individual mesoscopic element M. The element is parameterized by values
of so, sc, and ∆σ = σc − σo.

In order to evaluate the derivative ∂σH/∂s =
∑

M∈x ∂σM/∂s one needs to differentiate

the curve plotted in Fig. 1:

∂σM

∂s
= ∆σ Θ

(

s, so, sc, sign

(

∂s

∂τ

)

,S(M)

)

, ∆σ = σc − σo > 0 ,

where

Θ

(

s, so, sc, sign

(

∂s

∂τ

)

,S(M)

)

= −























δ(s − so), if S(M) = “C ”, ∂s/∂τ > 0

δ(s − sc), if S(M) = “O”, ∂s/∂τ < 0

0, if S(M) = “C ”, ∂s/∂τ < 0

0, if S(M) = “O”, ∂s/∂τ > 0

, (2.4)

and then calculate the velocity in Eq. (2.2). Note that at each value of strain after calculation

of the derivative given by Eq. (2.4) we must keep track of the state S(M), reassigning

S(M) = “O” in the first case in Eq. (2.4) (with δ(s − so)) and S(M) = “C ” in the second

case (with δ(s − sc)). In other words, the state S(M) of an element M depends not only on

the current value of strain but also on the strain rate:

S(M) =























“O”, if so ≤ s

“O”, if sc ≤ s ≤ so, ∂s/∂τ < 0

“C ”, if s ≤ sc

“C ”, if sc ≤ s ≤ so, ∂s/∂τ > 0

, (2.5)
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as it is illustrated in Fig. 1. Here one should stress the principal feature of the system

under study: only the elements changing their state under a current s contribute to stress

variation. This is easy to understand if we note that a nonzero derivative in Eq. (2.4) can

be found only in cases with delta functions, when according to Eq. (2.5) the state change

to the opposite one.

Then for simplicity one considers ∆σ = σp − σo for all the elements to be equal and

independent of x, and parameters so and sc to be uniformly distributed in the triangle

∆ = {(so, sc): −s̄ < so < s̄, −s̄ < sc < so}. This means that the distribution function

f(so, sc) = f0 = const. (here f(so, sc)dsodsc is the number of mechanical elements in the

PM-rectangle (so, so + dso) × (sc, sc + dsc)). Certainly for further numerical analysis these

assumptions are not that important: we could consider two nontrivial distributions f(so, sc)

and fσ(∆σ) (if ∆σ for all the elements are not equal) both dependent on x, if necessary.

Note that despite of the use of the simplest distributions for ∆σ and (so, sc), the parameter

s̄ (related to the size of PM-triangle containing mechanical elements) is still left arbitrary.

It must be, however, larger than amplitude of strain oscillations.

Making use of the above simplifications and changing the summation in Eq. (2.3) for

integration, one writes:

∂σH

∂s
=

∫ +∞

−∞

dsc

∫ +∞

−∞

dso

∂σM

∂s
f(so, sc)

= f0∆σ

∫ so

−s̄

dsc

∫ s̄

sc

dsoΘ

(

s, so, sc, sign

(

∂s

∂τ

)

,S(M)

)

. (2.6)

The Eqs. (2.1), (2.2), (2.4) and (2.6) become a complete set of equations describing the

strain wave propagating in a material with hysteretic mesoscopic elements.

We also have to add the boundary condition:

s(x = 0, τ) = sb(τ) (2.7)

and the initial condition for the state of the elements

S(M)|τ=0 = S0(M) , (2.8)

that can, in general, depend on x.

For graphical illustration of mesoscopic elements switching we have plotted Fig. 2(a),

that contains a series of pictures in PM-space, corresponding to different points (0–15) of

the strain curve s(τ) in Fig. 2(b). The strain evolution presented in Fig. 2(b) is chosen

rather arbitrary.

If a given point s is located on the part of the wave profile with a positive value of the

strain rate, then all elements at the left of a vertical line so = s in PM-space are open. This

line moves to the right as the strain s(τ) increases, switching all closed elements it is passing

through. After reaching strain maximum the “switching line” becomes horizontal (sc = s),

it moves down, closing the elements over it. This process continues until a minimum of

s(τ) is achieved, and then turns again to opening (by the vertical line so = s). Thus the
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Fig. 1. A hysteretic model of an individual 
mesoscopic element Μ. The element is 
parameterized by values of so, sc, and ∆σ=σc-σo. 

Fig. 2. Illustration of switching in PM-space. The pictures 
0-15 (a) are patterns in (so,sc)-PM-space corresponding to 
the points on the strain curve s(τ) below (b). The arrows 
indicate the direction of switching. Areas containing open 
elements are plotted in light gray, areas containing the 
closed ones are dark gray. The “switching lines” are marked 
by thin lines in each portrait, the “switching sections” are  
thicker. The pictures 2, 5, 7, 9, 12, 15 correspond to the end 
points (local extrema of s(τ)). 
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Fig. 2. Illustration of switching in PM-space. The pictures 0–15 (a) are patterns in (so, sc)-PM-space corre-
sponding to the points on the strain curve s(τ ) below (b). The arrows indicate the direction of switching.
Areas containing open elements are plotted in light gray, areas containing the closed ones are dark gray.
The “switching lines” are marked by thin lines in each portrait, the “switching sections” are thicker. The
pictures 2, 5, 7, 9, 12, 15 correspond to the end points (local extrema of s(τ )).

distribution of open and closed elements at any moment of time τ depends on extrema

of strain curve in preceding moments. However, the system does not “remember” all the

extrema achieved in the past. During the evolution the tracking on some of them is lost. For

example, the states 8–10 in Fig. 2 contain the information on the preceding weak maximum

7, but passing to the state 11 erases the memory about it.

Now let us examine the evolution of the velocity v(x, τ) = −(2ρ0c
3
0)

−1∂σH/∂s

(Eq. (2.2)), that describes deformation of strain profile and is a key point of all our con-

structions. First imagine that all elements located to the right of the “opening” line so = s

were initially closed. Then Θ in Eq. (2.4) equals to δ(s − so), and Eq. (2.6) gives21:

∂σH

∂s
= −f0∆σ

∫ so

−s̄

dsc

∫ s̄

sc

dsoδ(s − so) = −f0∆σ

∫ s

−s̄

dsc = −f0∆σ(s + s̄) , (2.9)

that is, in fact, just the length of this line (multiplied by f0∆σ). In the case of closing the
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situation is similar:

∂σH

∂s
= −f0∆σ

∫ so

−s̄

dsc

∫ s̄

sc

dsoδ(s − sc) = −f0∆σ

∫ s̄

s

dso = −f0∆σ(s̄ − s) . (2.10)

Now, if we take into account that in reality not all the elements of the line are switched

(i.e. some of them are in the same state before and after the passage of the switching line),

we conclude that s̄ ± s in the above equations has to be replaced by the section of the

switching line providing the boundary between open and closed areas in PM-space. In all

PM-patterns of Fig. 2 such “switching sections” are marked by thicker lines. This is just

another (graphical) interpretation of the Eqs. (2.4)–(2.6) showing that only the elements

changing their state at a given τ will give a contribution to the nonlinearity.

So, generally speaking, the process of strain wave propagation in a medium with hys-

teretic elements has the memory about its history, namely about some of strain extrema.

Thus, unfortunately, further analytical consideration encounters serious difficulties, since

one has to keep track on the state S(M) of mesoscopic elements, solving the system of

Eqs. (2.1), (2.2), (2.4)–(2.8), that contains both continuous and discrete functions.

Such statement of the problem is rather complete, but it has a serious disadvantage: the

solution will depend on some arbitrary parameters, as the initial configuration of open and

closed areas in PM-space (in a real experimental situation we do not know it in advance),

together with the outer limit of PM-triangle. However, if we consider a periodical signal, then

after passing one period this configuration will be erased. Of course, the second period will

still carry some information on the initial state, since the first one when erasing the initial

state was additionally distorted. But the subsequent periods will contain this information

in lesser and lesser degree. In other words, we expect that after passing a large number

of cycles the process will converge to a stationary one. This means that the acoustic wave

“prepares” the medium for itself.22 This stationary solution in the “prepared” medium is a

goal of our consideration.

Let us compare the method proposed above and the numerical simulation LISA (local

interaction simulation approach), reported in a cycle or papers by M. Scalerandi, P. P.

Delsanto et al. (see, for example, Refs. 27 and 28). The latter also assumes 1D geometry

and PM-distribution of hysteretic units and produces quite similar results in the case of the

sinusoidal input (in particular, odd-order harmonics dominance in the spectrum). However,

instead of a continuous medium LISA considers a discrete system (a chain) of mechanical

elements, which can be elastic and/or hysteretic. An element at a coordinate x corresponds

to a point in PM-space, whereas in the description above one x-point corresponds to a whole

PM-space, since the summation (Eq. (2.3)) is applied over all hysteretic units belonging to

a physically small volume. As soon as a model for the hysteretic elements is chosen and the

statistical distribution of their parameters is known both approaches should provide equiva-

lent results for long acoustic waves. We perform analytically the averaging (homogenization)

of the material properties, while LISA does this in the process of numerical computing. This

difference is demonstrated by results27,28 obtained by LISA, which are affected by uncer-

tainty coming from the fact that each x-point has random (and not averaged) hysteretic
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properties. In our opinion, the major advantage of LISA is in its future possible application

to the analysis of short waves propagation, where there are just a few different hysteretic

elements at the scale of the acoustic wavelength and the homogenization is not possible.

3. Numerical Solution of the Evolution Equation

3.1. Numerical integration scheme

Now let us turn to the numerical procedure we have developed for realization of the afore-

mentioned goal. First we introduce dimensionless variables, assuming a periodic strain wave

at the boundary (x = 0) with a period τ 0 and characteristic strain value s0. These variables

are:

τ ′ =
τ

τ0
, s′ =

s

s0
, x′ =

x

xnl

, v′ = v
τ0

xnl

, c′0 = c0
τ0

xnl

(3.1)

where

xnl =
2τ0ρ0c

3
0

∆σf0s0
(3.2)

is a characteristic length of the nonlinear interaction.20–22 Below in the text the primes are

omitted.

Methods of solving the transport equation (Eq. (2.1)) are well known. We have used a

symmetrical scheme with centered finite differences given by:

1

2∆x
(si+1

j − si
j) +

1

2∆x
(si+1

j+1 − si
j+1) +

v

2∆τ
(si

j+1 − si
j) +

v

2∆τ
(si+1

j+1 − si+1
j ) = 0 . (3.3)

Here si
j = s(xi, τj), i = 1, . . . , Nx, j = 1, . . . , Nτ , is the discrete strain function, defined on

the grid xi = ∆x(i−1), τj = ∆τ(j−1) where the steps ∆x = X/(Nx−1), ∆τ = T/(Nτ −1)

and X and T are intervals of consideration for space and time, respectively (all variables

are dimensionless).

This scheme has the second order of approximation and requires the common stability

conditions:

vmax∆x < ∆τ , (3.4)

but in order to run it we need some additional information about strain values at the next

x-layer i + 1. Here we have two possibilities as following:

(i) The most direct way is to start with the state depicted in Fig. 2(0), where all elements

with sc > 0 are closed and the elements sc < 0 are open (or any other similar distribution

containing initially open and initially closed elements). In addition we also have to consider

a signal on entry (the boundary condition sb(τ)) starting with increasing front and having

sb(0) = 0. Such a configuration on open and closed areas will lead to the velocity v to be 0

at the first moment of time. Indeed, the switching section AB in Fig. 2(1) has zero length

at the moment τ = 0. This means that the first point (τ = 0) of the strain profile will never
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of the first period of the strain curve is unmovable, but the starting points of all other 
cycles will be shifted, because at these points we have nonzero value of v. Running 
ahead, we plotted in Fig 3 such transitional process, when the stationary strain profile is 
greatly distorted by the influence of the initial condition. 
 Therefore we preferred another method consisting of computing the stationary profile 
itself as described below. 
(ii) For periodic excitation, let us consider periodic conditions for each strain curve 
against time. This means that one defines additional Nτ+1-th point of the time 
discretization, assuming ii

N ss 11 =+τ
 and the same step τ

ττ
∆=−+

i
N

i
N ss 1  (i=1…Nx). Then 

we have a complete system of equations for a new x-layer i+1. To solve it, we have used 
iterative method as following: define an iteration sequence )(~ k

js  for the k-th iteration and 

i+1-th x-layer, admit iss 1
)1(

1
~ = , then compute ( ))1(

1
)1(
1

~,,~
j

i
j

i
jj sssFs ++ =  in order to have )1(

1
~

+τNs , 

then use the periodical condition and fix )1(
1

)2(
1

~~
+=

τNss , etc. Calculations show that already 

the second iteration is sufficient to achieve the equality 1
1

1
1

++
+ = ii

N ss
τ

. 
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Fig. 3. Illustration of the transition process: the 
nonlinear distortion of a strain sinewave 
s(x=0,τ)=sin2πτ, calculated for different depths x. 

The outer limit of PM-space: s =2. 

Fig. 4. The parametrization of PM-space configuration by 
the corner points A1, A2, …, Al, …, AL of the boundary 
between open (light gray) and closed (dark gray) areas. 
The “switching line” is A 1S, the “switching section” is 
A1A2. 

 
 However, this it is still not enough to run the numerical scheme. To calculate the 
strain profile at the next x-step i+1 we need also to know the configuration of open and 
closed areas in PM-space in the beginning of each period. Otherwise it is impossible to 
obtain the value v that is present in the Eq. (3.3). To fix such a configuration we use the 
following fact: for a periodical signal one can start moving to the next x-layer i+1 
according to Eq. (3.4), taking any arbitrary τ-index j=j1 as initial and substituting the 
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Fig. 3. Illustration of the transition process: the nonlinear distortion of a strain sinewave s(x = 0, τ ) =
sin 2πτ , calculated for different depths x. The outer limit of PM-space: s̄ = 2.

be shifted and we can fix s(x, 0) = 0, i.e. si
1 = 0 for each point xi. Then, having s1

j = sb(τj)

at x = 0, si
1 = 0 at τ = 0, we calculate si+1

j+1 from known values of si
j, s

i
j+1, s

i+1
j :

si+1
j+1 = F (si

j , s
i
j+1, s

i+1
j ) , (3.5)

where function F can be easily found by resolving Eq. (3.3) with respect to si+1
j+1.

This scheme is valid if the velocity of the strain profile’s translation v ≥ 0 for every

number i and j, because only in this case the profile shifts entirely in the positive direction,

so that all si
1 are retained undistorted (and equal to 0). Note that this condition is obviously

fulfilled (see Eqs. (2.2) and (2.4)).

The main disadvantage of such an approach is that we have in this case a long transient

process before achieving the stationary solution. For instance, the starting point of the first

period of the strain curve is unmovable, but the starting points of all other cycles will be

shifted, because at these points we have nonzero value of v. Running ahead, we plotted in

Fig. 3 such transitional process, when the stationary strain profile is greatly distorted by

the influence of the initial condition.

Therefore we preferred another method consisting of computing the stationary profile

itself as described below.

(ii) For periodic excitation, let us consider periodic conditions for each strain curve

against time. This means that one defines additional (Nτ + 1)th point of the time dis-

cretization, assuming si
Nτ+1 = si

1 and the same step si
Nτ+1 − si

Nτ

= ∆τ (i = 1, . . . , Nx).

Then we have a complete system of equations for a new x-layer i + 1. To solve it, we have

used iterative method as following: define an iteration sequence s̃
(k)
j for the kth iteration
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of the first period of the strain curve is unmovable, but the starting points of all other 
cycles will be shifted, because at these points we have nonzero value of v. Running 
ahead, we plotted in Fig 3 such transitional process, when the stationary strain profile is 
greatly distorted by the influence of the initial condition. 
 Therefore we preferred another method consisting of computing the stationary profile 
itself as described below. 
(ii) For periodic excitation, let us consider periodic conditions for each strain curve 
against time. This means that one defines additional Nτ+1-th point of the time 
discretization, assuming ii
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 and the same step τ
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 However, this it is still not enough to run the numerical scheme. To calculate the 
strain profile at the next x-step i+1 we need also to know the configuration of open and 
closed areas in PM-space in the beginning of each period. Otherwise it is impossible to 
obtain the value v that is present in the Eq. (3.3). To fix such a configuration we use the 
following fact: for a periodical signal one can start moving to the next x-layer i+1 
according to Eq. (3.4), taking any arbitrary τ-index j=j1 as initial and substituting the 
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Fig. 4. The parametrization of PM-space configuration by the corner points A1, A2, . . . , Al, . . . , AL of the
boundary between open (light gray) and closed (dark gray) areas. The “switching line” is A1S, the “switching
section” is A1A2.

and (i + 1)th x-layer, admit s̃
(1)
1 = si

1, then compute s̃
(1)
j+1 = F (si

j , s
i
j+1, s̃

(1)
j ) in order to

have s̃
(1)
Nτ+1, then use the periodical condition and fix s̃

(2)
1 = s̃

(1)
Nτ+1, etc. Calculations show

that the second iteration is already sufficient to achieve the equality si+1
Nτ+1 = si+1

1 .

However, this is still not enough to run the numerical scheme. To calculate the strain

profile at the next x-step i + 1 we also need to know the configuration of open and closed

areas in PM-space in the beginning of each period. Otherwise it is impossible to obtain

the value v that is presented in Eq. (3.3). To fix such a configuration we use the following

fact: for a periodical signal one can start moving to the next x-layer i + 1 according to

Eq. (3.4), taking any arbitrary τ -index j = j1 as initial and substituting the points with

lesser numbers j to the end of the strain curve. That is, we redefine the strain profile as:

ŝi
j−j1+1 = si

j for j1 ≤ j ≤ Nτ , ŝi
Nτ+j−j1+1 = si

j for 1 ≤ j ≤ j1 − 1 , (3.6)

and then use Eq. (3.5) to obtain the sequence ŝi+1
j , j = 1, . . . , Nτ . Now, if we take j1 at the

point of global maximum si
j1

= smax of the strain si
j at the current x-layer, the corresponding

PM-pattern is known: all elements are open. In this manner, we start calculations for the

shift to the global maximum strain profile first using Eq. (3.5) and then performing the back

substitution ŝi
j → si

j according to Eq. (3.6). The hats in the denotations will be omitted for

brevity.

The stability condition (Eq. (3.4)) for a stationary solution takes the form: (smax −
smin)∆x < ∆ since the maximum v does not exceed the maximum strain peak-to-peak

amplitude.
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This method was chosen for performing all further computations, because it yields

strictly periodical (i.e. stationary) solution without having a need to consider many pe-

riods in order to reach the convergence. Thus we found an appropriate algorithm to obtain

v without time-consuming direct consideration of transient processes.

3.2. Calculation of the nonlinear coefficients of the numerical scheme

The numerical scheme based on Eq. (3.3) has a nonlinear coefficient — the velocity v of

strain profile’s deformation, or, in other words, the derivative ∂σ/∂s of the stress–strain

relationship (Eq. (2.2)). First of all, in order to proceed from ith x-layer to (i + 1)th, the

only possibility we have is to take all nonlinear coefficients at ith layer, where all variables

are known. In the dimensionless variables this velocity is given by the expression:

v(xi, τj) =

∫ so

−s̄

dsc

∫ s̄

sc

dsoΘ

(

s, so, sc, sign

(

∂s

∂τ

)

,S(M)

)

. (3.7)

The r.h.s. of this equation, as it was demonstrated above, corresponds to the length of the

section of the boundary between open and closed sectors in PM-space determined by the

straight lines so = s or sc = s (see Fig. 2). Since the chosen scheme is symmetrical, it is

reasonable to substitute s here by 1/2(si
j + si

j+1) to keep the order of approximation.

To calculate numerically the length of the switching section one needs first to parameter-

ize a configuration of open and closed areas of PM-space. As the orientation of the switching

section is always vertical or horizontal, and it opens all elements at the left of it (if it is

vertical) and closes all elements above it (if it is horizontal), any arbitrary complicated

pattern always consists of two areas (one fully open and one fully closed) and a staircase

(stepwise) boundary between them.17,18 Such a boundary is represented by the broken line

A1A2, . . . , Al, . . . , AL in Fig. 4. So, any possible configuration of PM-space under acoustical

excitation is completely described by the coordinates of these end-points, which we denote

as Al = (Ol, Cl), l = 1, . . . , L (see Fig. 4). The point A1 lays on the diagonal and has the

coordinates (s, s), all the other corner points are to be kept in memory. After such param-

eterization, in order to obtain the velocity v (the length of the section A1A2) on a given

x-layer for every τ -point, one needs to shift the points A1 and A2 in accordance with tem-

poral strain variations s(τ), erasing the points A2 and A3 if at one moment they coincide,

and creating a new A1-point on the diagonal, if one of the extrema of s(τ) is reached. This

procedure in details looks like the following.

First, on a fixed xi-layer we find the global extrema smax and smin of sj (superscript i is

omitted) and then shift the strain profile according to Eq. (3.6) in order to begin with the

global maximum. At that position we take fully open PM-space, defining A1A2 section at the

left boundary of PM-space: A1 = (smax, smax), A2 = (smax, smin), and start cycles j → j+1.

In each cycle we analyze whether the current strain value sj+1 belongs to an increasing or

decreasing front of the strain profile (just comparing sj and sj+1). Considering now for

definiteness an increasing front (opening), we reassign the coordinates O1 and O2 of the

first two corner points to the value s = (sj + sj+1.)/2 (See Fig. 4) If the new coordinates

O1 and O2 exceed the value O3, the memory about the 2nd and the 3rd points should be
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erased; we delete these points and renumerate the arrays Ol and Cl so that the former 4th

point becomes the 2nd, 5th becomes 3rd, etc.

If the current strain value sj+1 is located in the very beginning of the increasing front

(i.e. sj was a local minimum over j) we have to introduce a new point A1, shifting the

indices of all old points by +1. In this way we keep tracking of all local extrema until they

are exceeded by larger excursions of strain.

After having the first two points shifted (and, if necessary, renumbering the points)

we take the searched nonlinear velocity to be equal to v = (si
j + si

j+1)/2 − C2. In the

case of a decreasing slope of the strain curve the procedure is analogous, and the velocity

v = O2 − (si
j + si

j+1)/2 . In this way we repeat the procedure until j = Nτ and then proceed

to the next x-layer according to Eq. (3.5).

The proposed algorithm appears to be an exact solution of finite-difference equation

(Eq. (3.3)), that is the second order of approximation of the initial differential Eq. (2.1).

Keeping track of the state of mesoscopic elements and searching for a stationary solution,

we did not use any additional assumptions.

3.3. Testing the numerical scheme

In order to examine the precision provided by the discussed method we have used the

analytical solution for the dimensionless equation:

∂s

∂x
+

[

smax(x) + sign

(

∂s

∂τ

)

s

]

∂s

∂τ
= 0, s(x = 0, τ) = sin 2πτ

that describes the strain wave propagation for the harmonic excitation. This solution in the

implicit form20:

s(x, τ) = sin

[

τ −
∫ x

0
smax(ξ)dξ − sign

(

∂s

∂τ

)

sx

]

,

is a transcendental algebraic equation. Here smax(x) is the depth dependence of maximum

of s(x, τ), that is also an unknown function, that results in the profile’s shift during the

propagation:

τ → τ −
∫ x

0
smax(ξ)dξ ≡ θ . (3.8)

Solving numerically the equation s(x, θ) = sin[θ − sign(∂s/∂θ)sx] with very high accuracy

(just by the conventional bisectional method, taking the middle point of a current interval

for the solution and comparing the r.h.s. and l.h.s. of the equation), we found the shifted

profile s(x, θ), estimated its maximum and recovered s(x, τ). All test computations were

performed for the maximal (deepest) x = X, the precision for smaller x being better.

The agreement between the strain profiles calculated via the implicit analytical solution

Eq. (3.8) and the above described iteration procedure was found within 0.6% for the number

of points in the finite-difference scheme Eq. (3.3) Nx = 10000, Nτ = 8192, and T = 1,

X = 0.5 (T and X are spatial and time intervals considered). This accuracy is affected



September 20, 2004 16:22 WSPC/130-JCA 00232

Propagation of Acoustic Waves of Nonsimplex Form 333

( ) ( ) ( )( )
0

, sin 2n n
n

s x Z x n xτ π τ φ
∞

=
= +∑ .     (3.9) 

 
The calculation indicated that for a pure sinusoidal wave s(x=0,τ)=sin 2πτ at the 
boundary (i.e. nnZ ,1)0( δ= ) only odd harmonics are generated, in agreement with [20,21, 

23]. The depth dependencies of the calculated strain harmonics are shown in Fig. 6 by 
solid lines, and the harmonics for the exact solution Eq. (3.8) are marked by filled circles. 
For the chosen numbers of points the precision is found to be 0.03%, 0.46%, 0.47%, and 
1.3% for the 3-rd, 5-th, 7-th and 9-th harmonics, respectively. As it was expected, this 
accuracy is much better than one we have for the strain profiles themselves, affected by 
the uncertainty in the positions of maxima. 
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Fig. 5. The nonlinear distortion of a strain wave 
s(x=0,τ)=sin2πτ, calculated at different depths x. 
The accuracy achieved for Nx=10000, Nô=8192, T=1 
and X=0.5 is 0.6%. 

Fig. 6. The generation of the harmonics during the 
propagation of the single frequency signal: the 
amplitudes Zn of harmonics against the depth x. The 
points indicate the spectral amplitudes Eq. (3.9) for 
the exact solution Eq. (3.8) 

 

4. Numerical Results for Two-Frequency Mixing in Nonlinear Wave Propagation 

Using the developed numerical scheme it is possible to analyze the nonlinear propagation 
of an arbitrary acoustic signal launched from the boundary 0=x . However, in order to 
get an insight in the physics of the process of wave interactions in materials with 
hysteretic quadratic nonlinearity we present here the results for the signals that are 
biharmonic at the boundary. Moreover, we limit ourselves to the analysis of a particular 
case where the signal at the boundary is a mixture of harmonic signals at frequencies ω  
and ω2 . This particular choice is motivated by the fact that the ω2 -wave is not 
generated by the ω -wave in materials with hysteretic quadratic nonlinearity (see Fig. 6). 
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Fig. 5. The nonlinear distortion of a strain wave s(x = 0, τ ) = sin 2πτ , calculated at different depths x. The
accuracy achieved for Nx = 10 000, Nτ = 8192, T = 1 and X = 0.5 is 0.6%.

mainly by an uncertainty of the extrema positions, since they play a key role in constructing

the solution, but are defined with a lower order accuracy (the 1st order in ∆τ). Further,

since a maximum of a strain profile has the uncertainty of ∆τ , the cumulative effect for

the deepest Nxth profile can be roughly estimated as ∆τ
√

Nx (in our case we had actually

the uncertainty values about 10∆τ = 0.0012 of a period). It was checked that, varying the

τ -shift of the iterated profile as a whole and matching it to the exact solution, one has much

better accuracy of about 0.01%. We hope that for most applications such a small shift is

not important, since it will not influence the strain spectrum, which is of the main interest.

Otherwise, it is possible to introduce an additional complication of the algorithm, making

use of a more accurate approximation for the strain profile near its maximum.

Due to the above mentioned reasons together with the asymmetric approximation of the

nonlinearity (corresponding to the ith layer, but not to the middle between the ith and the

(i + 1)th layers) the resultant order of approximation for the proposed method is less than

2.

The calculated test strain profiles for the sinusoidal signal are shown in Fig. 5. They

exhibit all known features for this case20: the nonlinear attenuation (described by smax(x))

the nonlinear decrease of sound velocity, the convergence to a saw-like shape at large depths.

We have also tested the accuracy of the calculation results in terms of the strain har-

monics Zn(x):

s(x, τ) =

∞
∑

n=0

Zn(x) sin(2πnτ + φn(x)) . (3.9)
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The accuracy achieved for Nx=10000, Nô=8192, T=1 
and X=0.5 is 0.6%. 

Fig. 6. The generation of the harmonics during the 
propagation of the single frequency signal: the 
amplitudes Zn of harmonics against the depth x. The 
points indicate the spectral amplitudes Eq. (3.9) for 
the exact solution Eq. (3.8) 

 

4. Numerical Results for Two-Frequency Mixing in Nonlinear Wave Propagation 

Using the developed numerical scheme it is possible to analyze the nonlinear propagation 
of an arbitrary acoustic signal launched from the boundary 0=x . However, in order to 
get an insight in the physics of the process of wave interactions in materials with 
hysteretic quadratic nonlinearity we present here the results for the signals that are 
biharmonic at the boundary. Moreover, we limit ourselves to the analysis of a particular 
case where the signal at the boundary is a mixture of harmonic signals at frequencies ω  
and ω2 . This particular choice is motivated by the fact that the ω2 -wave is not 
generated by the ω -wave in materials with hysteretic quadratic nonlinearity (see Fig. 6). 
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Fig. 6. The generation of the harmonics during the propagation of the single frequency signal: the amplitudes
Zn of harmonics against the depth x. The points indicate the spectral amplitudes Eq. (3.9) for the exact
solution Eq. (3.8).

The calculation indicated that for a pure sinusoidal wave s(x = 0, τ) = sin 2πτ at the

boundary (i.e. Zn(0) = δ1,n) only odd harmonics are generated, in agreement with Refs. 20,

21 and 23. The depth dependencies of the calculated strain harmonics are shown in Fig. 6

by solid lines, and the harmonics for the exact solution Eq. (3.8) are marked by filled circles.

For the chosen numbers of points the precision is found to be 0.03%, 0.46%, 0.47%, and 1.3%

for the 3rd, 5th, 7th and 9th harmonics, respectively. As it was expected, this accuracy is

much better than one we have for the strain profiles themselves, affected by the uncertainty

in the positions of maxima.

4. Numerical Results for Two-Frequency Mixing in Nonlinear Wave

Propagation

Using the developed numerical scheme it is possible to analyze the nonlinear propagation

of an arbitrary acoustic signal launched from the boundary x = 0. However, in order to

get an insight in the physics of the process of wave interactions in materials with hysteretic

quadratic nonlinearity we present here the results for the signals that are biharmonic at

the boundary. Moreover, we limit ourselves to the analysis of a particular case where the

signal at the boundary is a mixture of harmonic signals at frequencies ω and 2ω. This

particular choice is motivated by the fact that the 2ω-wave is not generated by the ω-wave

in materials with hysteretic quadratic nonlinearity (see Fig. 6). This is expected to provide

some simplification in the interpretation of the results. More importantly is the fact that
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Fig. 9. Nonlinear distortion of the biharmonical 
strain wave: 
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Fig. 10. Generation of higher harmonics during the 
process of two-frequency wave propagation 
(Fig. 9): the depth dependences of the spectral 
amplitudes Zn(x) for different frequencies nω. 
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Fig. 7. Nonlinear distortion of the biharmonic strain wave: s(x = 0, τ ) = A1 sin 2πf1τ + A2 sin 2πf2τ . Here
f1 = 1, f2 = 2, A1 = 1, A2 = 0.2 (“simplex” profile).

in this case the analytical results describing the nonlinear hysteretic absorption of acoustic

waves can be obtained in a limiting regime and can be used both for the additional testing

of the numerical scheme and for the interpretation of the numerical results.

In the first set of the simulations we added to the sinusoidal input analyzed in Sec. 3.3

without any phase shift a sinusoidal signal at frequency 2ω. The boundary condition takes

the form:

s(x = 0, τ) = Z1(0) sin 2πf1τ + Z2(0) sin 2πf2τ ≡ A1 sin 2πτ + A2 sin 4πτ . (4.1)

Here and in the following we use the notations A1,2 for the amplitudes Z1,2(0) of the waves

with frequencies ω and 2ω at the boundary. Figure 7 illustrates the nonlinear distortion of

the wave profile with increasing propagation distance and Fig. 8 presents the evolution of

the spectrum for a typical simplex wave (A2/A1 = 0.2 < 0.5). Note that for the boundary

condition in Eq. (4.1) the complex wave is launched from the boundary if A2/A1 > 0.5.

Figure 9 presents the evolution of the wave profile for a typical complex wave (A2/A1 =

0.7 > 0.5), while Fig. 10 shows its spectrum. In the spectrum presentations here and later we

retain only the frequencies that can be generated by the initial ω and 2ω waves directly by

the four-phonon processes. In general in the medium with hysteretic quadratic nonlinearity

for frequency mixing of ω1 and ω2 resulting in the excitation of ω3 the following multi-

phonon processes are allowed29,30: ω3 = ±(ω1) ± 2m(ω2) and ω3 = ±(ω2) ± 2m(ω1) with

arbitrary combination of signs and factors m = 1, 2, 3, . . . . One phonon of frequency ω1,2

and 2m phonons of frequency ω2,1 are participating together with the resultant phonon
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depth dependences of the spectral amplitudes Zn(x) for different frequencies nω.
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Fig. 9. Nonlinear distortion of the biharmonical strain wave: s(x = 0, τ ) = A1 sin 2πf1τ +A2 sin 2πf2τ . Here
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Fig. 10. Generation of higher harmonics during the process of two-frequency wave propagation (Fig. 9): the
depth dependences of the spectral amplitudes Zn(x) for different frequencies nω.

of frequency ω3 in each 2(m + 1)-phonon process. However the efficiency of the process

diminishes with the increasing m. That is why we keep in our presentation (but, surely, not

in the calculations) only the four-phonon processes (corresponding to m = 1).

The remarkable feature observed in the spectrum evolution (Figs. 8 and 10) is the faster

initial growth of the 4ω-wave in comparison with the 3ω-wave. At first glance this looks

unexpectedly because the efficiency of the process (ω)+2(ω) = 3ω (Sec. 3.3) is proportional

to A2
1, while the efficiency of the process of the 4ω-wave generation (2ω)+2(ω) = 4ω (where

one phonon of the 2ω-wave is combined with two phonons of the ω-wave) is proportional

to A1A2, and normally it is lower when A2 � A1 (Fig. 8). However, it should be taken

into account that in the presence of the 2ω-wave there is an additional process of the direct

excitation of the third harmonic: −(ω)+2(2ω) = 3ω, where two phonons of the 2ω-wave are

combined with a phonon of the ω-wave. Clearly, the latter process acting in anti-phase to

the process (ω)+2(ω) = 3ω could be responsible for the decrease of the 3ω-wave amplitude

in the presence of the 2ω-wave (Fig. 8) in comparison with the case of the monochromatic

input (Fig. 6). Though this interpretation is plausible, we have in any case to admit that

high relative efficiency of the forth harmonic excitation for the particular phasing between

the input waves assumed in Eq. (4.1) is amazing.

The important feature extracted from the analysis of the wave profile transformation

(Fig. 9) is the gradual transformation of the complex wave into the simplex wave with

increasing propagation distance. The local maximum disappears due to the hysteretic ab-

sorption, that near the wave extrema has a very clear “geometrical” manifestation. In fact,
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(Fig. 8) in comparison with the case of the monochromatic input (Fig. 6). Though this 
interpretation is plausible, we have in any case to admit that high relative efficiency of 
the forth harmonic excitation for the particular phasing between the input waves assumed 
in Eq. (4.1) is amazing. 

The important feature extracted from the analysis of the wave profile transformation 
(Fig. 9) is the gradual transformation of the complex wave into the simplex wave with 
increasing propagation distance. The local maximum disappears due to the hysteretic 
absorption, that near the wave extrema has a very clear “geometrical” manifestation. In 
fact, similar to the case of a pure sinusoidal wave [20, 21] (or to the case of the acoustic 
pulses [22]) the leading part of the wave profile near the extremum is always delayed due 
to nonlinear effects relative to the trailing part. An extremum itself is the intersection 
point of these rising and falling (or vice versa) parts of the profile where the leading part 
moves near the extremum in the direction of the trailing part [20]. 

The formal mathematics demonstrates that the nonlinear contribution to sound 
velocity is always negative just before the extremum and is equal to zero just after the 
extremum (see, for example Eq. (5.1) and Eq. (5.4) in Section 5). The continuous mutual 
“penetration” of these leading and trailing parts leads to the diminishing of the strain 
amplitude in the extremum (compare for example the profiles at x=0 and x=0.5 in Fig. 9). 
In Fig. 11 we present the dependence of 
the critical distance xsmpl for the end of 
the transition from the complex to the 
simplex wave on the amplitude 2A  of 
the ω2 -wave at the boundary. The 
proposed numerical algorithm enables 
us to keep track of the number of 
extrema directly. From general 
considerations it might be expected that 
the frequency mixing processes 
significantly depend on the relative 
phase shift between the interacting 
waves. One of the best-known 
examples is the dependence of the 
amplification of the subharmonic 
( 2/ω ) in the field of the ω -wave in 
material with a classical elastic 
quadratic nonlinearity on their mutual 
phasing [24]. For the materials with 
hysteretic quadratic nonlinearity the 
dependence of the absorption of a weak 
probe wave in the field of a strong 
pump wave on their relative phase was 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.11. The critical distance xsmpl (the distance when a 
complex wave becomes simplex) as a function of 
amplitude A2 for the boundary conditions Eq. (4.1) 
(“sin+sin”) and Eq.  (4.2) (“cos+cos”). Here A1=1 in 
both cases. 

predicted theoretically [31]. Following these indications we decided to analyze the case 
with the boundary condition different from one in Eq. (4.1) and we introduced the shift 
equal to 4/π  into the ω2 -wave. In fact the possible phase shifts ϕ∆  leading to  
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Fig. 11. The critical distance xsmpl (the distance when a complex wave becomes simplex) as a function of
amplitude A2 for the boundary conditions Eq. (4.1) (“sin + sin”) and Eq. (4.2) (“cos + cos”). Here A1 = 1
in both cases.

similar to the case of a pure sinusoidal wave20,21 (or to the case of the acoustic pulses22)

the leading part of the wave profile near the extremum is always delayed due to nonlinear

effects relative to the trailing part. An extremum itself is the intersection point of these

rising and falling (or vice versa) parts of the profile where the leading part moves near the

extremum in the direction of the trailing part.20

The formal mathematics demonstrates that the nonlinear contribution to sound velocity

is always negative just before the extremum and is equal to zero just after the extremum (see,

for example Eq. (5.1) and Eq. (5.4) in Sec. 5). The continuous mutual “penetration” of these

leading and trailing parts leads to the diminishing of the strain amplitude in the extremum

(compare for example the profiles at x = 0 and x = 0.5 in Fig. 9). In Fig. 11 we present

the dependence of the critical distance xsmpl for the end of the transition from the complex

to the simplex wave on the amplitude A2 of the 2ω-wave at the boundary. The proposed

numerical algorithm enables us to keep track of the number of extrema directly. From general

considerations it might be expected that the frequency mixing processes significantly depend

on the relative phase shift between the interacting waves. One of the best-known examples

is the dependence of the amplification of the subharmonic (ω/2) in the field of the ω-wave

in material with a classical elastic quadratic nonlinearity on their mutual phasing.24 For

the materials with hysteretic quadratic nonlinearity the dependence of the absorption of a

weak probe wave in the field of a strong pump wave on their relative phase was predicted



September 20, 2004 16:22 WSPC/130-JCA 00232

Propagation of Acoustic Waves of Nonsimplex Form 339

 

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

1.5
x=0

x=0.15

x=0.3

x=0.5

         0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.01

0.02

0.03

0.04

0.05

0.06
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Fig. 13. Generation of higher harmonics during the 
process of two-frequency wave propagation 
(Fig. 12): the depth dependencies of the spectral 
amplitudes Zn(x) for different frequencies nω. 

 
 

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
x=0

x=0.15

x=0.3

x=0.5

         0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 
 
 
Fig. 14. Nonlinear distortion of the biharmonical 
strain wave: 
s(x=0,τ)= A1 cos 2πf1τ + A2 cos 2πf2τ. Here f1=1, 
f2=2, A1=1, A2=0.7 (“complex” profile).  

Fig. 15. Generation of higher harmonics during the 
process of two-frequency wave propagation 
(Fig. 14): the depth dependencies of the spectral 
amplitudes Zn(x) for different frequencies nω. 

 

retarded time τ 

retarded time τ depth x 

st
ra

in
 s

 

sp
ec

tr
al

 a
m

pl
itu

de
s 

Z
n(

x)
 

depth x 

n=4 

n=3 

n=6 

n=5 

n=1 

n=2 

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

st
ra

in
 s

 

sp
ec

tr
al

 a
m

pl
itu

de
s 

Z
n(

x)
 

n=4 

n=3 

n=6 

n=5 

n=1 

n=2 

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

Acoustic Waves in Hysteretic Materials

Fig. 12. Nonlinear distortion of the biharmonical strain wave: s(x = 0, τ ) = A1 cos 2πf1τ + A2 cos 2πf2τ .
Here f1 = 1, f2 = 2, A1 = 1, A2 = 0.2 (“simplex” profile).
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Fig. 15. Generation of higher harmonics during the 
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Fig. 13. Generation of higher harmonics during the process of two-frequency wave propagation (Fig. 12): the
depth dependencies of the spectral amplitudes Zn(x) for different frequencies nω.
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Fig. 14. Nonlinear distortion of the biharmonical strain wave: s(x = 0, τ ) = A1 cos 2πf1τ + A2 cos 2πf2τ .
Here f1 = 1, f2 = 2, A1 = 1, A2 = 0.7 (“complex” profile).

theoretically.31 Following these indications we decided to analyze the case with the boundary

condition different from one in Eq. (4.1) and we introduced the shift equal to π/4 into the

2ω-wave. In fact the possible phase shifts ∆ϕ leading to qualitatively different results in wave

transformation are limited by the interval 0 ≤ ∆ϕ ≤ π/4. So the chosen case ∆ϕ = π/4 can

be considered as the opposite to ∆ϕ = 0 (Eq. (4.1)) limiting case. The boundary condition

for ∆ϕ = π/4 can be equivalently presented as:

s(x = 0, τ) = A1 cos 2πτ + A2 cos 4πτ . (4.2)

In Figs. 12 and 13 we present for a typical simplex wave the evolution of the profile and

the spectrum, respectively. The complex wave exists for the boundary condition Eq. (4.2)

if A2/A1 ≥ 0.25. In Figs. 14 and 13 we present for a typical complex wave the evolution

of the profile and the spectrum, respectively. The results in Figs. 13 and 15 confirm the

hypothesis on the strong dependence of the frequency mixing process in the materials with

hysteretic quadratic nonlinearity on the mutual phase of the ω and 2ω waves.

In the case ∆ϕ = π/4 the efficiency of the 4ω-wave excitation at short propagation

distances does not exceed the efficiency of the third harmonic generation.

In the case of the boundary condition Eq. (4.2) the transformation of a complex wave

into a simplex one is also observed (Fig. 14). From Fig. 11 it follows that in this regime

(marked as “cos + cos”) the simplex wave is formed (for the same ratio A2/A1) at shorter

propagation distances in comparison with the regime “sin+ sin” (∆ϕ = 0). Qualitatively

this is due to higher nonlinear hysteretic absorption near the local extrema in the former
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Fig. 15. Generation of higher harmonics during the process of two-frequency wave propagation (Fig. 14): the
depth dependencies of the spectral amplitudes Zn(x) for different frequencies nω.

regime. In fact the hysteretic absorption in an extremum depends on the magnitude of the

differences between the strain value se in the considered extremum and the strain sep in

the previous extremum. More precisely the “velocity” of the mutual penetration of the two

parts of the wave profile near the extremum is proportional to |se − sep|. Comparison of

Figs. 9 and 14 clearly demonstrates that at the boundary this factor for the first strain

minimum is larger in the regime ∆ϕ = π/4 than in the regime ∆ϕ = 0. The larger critical

length xsmpl in the regime “sin+ sin” can be attributed to the fact that in this regime the

formation of the internal loop (characteristic to the complex process) leads to nearly twice

reduction of |se − sep| magnitude in comparison with the regime “cos + cos”.

Though the obtained results concerning the higher harmonics are interesting, the higher

harmonics excited in the four-phonon processes are usually small (Figs. 8, 10, 13 and 15).

For example even in the propagation of a pure sinusoidal wave the third harmonic amplitude

is less than 10% of the fundamental (Fig. 6). These are the ω-wave and the 2ω-wave that

commonly dominate in the total acoustic signal (see the insets in Figs. 8, 10, 13 and 15).

Consequently, the most important is to analyze the mutual influence of these waves in the

process of frequency mixing. In Fig. 16 we present the results of this analysis in the case

∆ϕ = 0 (“sin + sin”). The dependence of the amplitude of one wave on the amplitude of

another one is evaluated at different distances from the boundary.

The examination of the results in Fig. 16 leads to the conclusion that at short prop-

agation distances the increase in the amplitude of either ω-wave (A1) or the 2ω-wave
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Fig. 16. The normalized spectral amplitudes Z1/A1 (a), (c) and Z2/A2 (b), (d) for different depths x as
functions of the amplitude A1 (A2 = 1 = const.) (a), (b) and as functions of A2 (A1 = 1 = const.) (c), (d),
calculated for the initial signal s(x = 0, τ ) = A1 sin 2πf1τ + A2 sin 2πf2τ, f1 = 1, f2 = 2.

(A2) usually induces additional absorption (∂(Z1/A1)/∂A1 < 0, ∂(Z1/A1)/∂A2 < 0,

∂(Z2/A2)/∂A2 < 0). Only the dependence of the 2ω-wave amplitude on the amplitude

of the ω-wave exhibits the regime of the induced transparency (∂(Z2/A2)/∂A1 > 0) in

the neighborhood of A1 ≈ 1.5 (Fig. 16(b)). At larger propagation distances this induced

transparency regime becomes even more pronounced, and the intervals of the induced trans-

parency are also predicted for the influence of 2ω-wave on the ω-wave as well (Fig. 16(c),
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Fig. 17. The normalized spectral amplitudes Z1/A1 (a), (c) and Z2/A2 (b), (d) for different depths x as
functions of the amplitude A1 (A2 = 1 = const.) (a), (b) and as functions of A2 (A1 = 1 = const.) (c), (d),
calculated for the initial signal s(x = 0, τ ) = A1 cos 2πf1τ + A2 cos 2πf2τ, f1 = 1, f2 = 2.

x ≥ 0.2, A2 ≈ 1). Moreover, the self-induced transparency is found for the 2ω-wave in the

field of the ω-wave at sufficiently large distances (Fig. 16(d), ∂(Z2/A2)/∂A2 > 0 for x ≥ 0.3

and A2 ≤ 0.5).

In Fig. 17 we illustrate the mutual influence of the ω- and 2ω-waves in the case ∆ϕ = π/4

(“cos + cos”). Comparison of Figs. 16 and 17 clearly indicates the dependence of the ana-

lyzed processes on the phase between the input waves. In the regime ∆ϕ = π/4 the increase
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of the ω-wave amplitude induces additional absorption of both ω- and 2ω-waves at all

tracked distances (Fig. 17(a,b)). At the same time the increase of the 2ω-wave amplitude

can diminish absorption of both ω- and 2ω-waves even at shortest propagation distances. In-

duced transparency (∂(Z1/A1)/∂A2 > 0) is predicted numerically for A2 ≤ 0.5 (Fig. 17(c)).

Self-induced transparency for the 2ω-wave (∂(Z2/A2)/∂A2 > 0) in the presence of the

ω-wave is expected in the interval of A2 values that depends on the propagation distance

(Fig. 17(d)).

The numerically obtained predictions concerning the existence of the induced trans-

parency effects even at the shortest propagation distances indicate that these effects (at

least near the boundary) are not due to the wave spectrum transformation but rather due

to the peculiar features of local nonlinear hysteretic absorption in the process of two fre-

quency mixing. This gave us an idea to analyze the local hysteretic absorption of both ω-

and 2ω-oscillations at the boundary x = 0. Fortunately in the case ∆ϕ = π/4 the analytical

description of the local hysteretic absorption is possible in addition to numerical (providing

additional insight in the physics of the phenomena and an additional opportunity to test

our numerical algorithm).

5. Analytical and Numerical Analysis of Local Nonlinear Hysteretic

Absorption

In order to get better physical insight in the obtained results of numerical simulations of the

nonlinear wave propagation (discussed in Sec. 4) we present below some analytical results

related to local hysteretic absorption in the considered process of ω and 2ω interaction.

Surely the harmonics that are generated in the nonlinear wave propagation of the primary

waves at ω and 2ω do also contribute to the process of nonlinear hysteretic absorption,

so that the applicability of the below presented analytical results is limited to the vicinity

of the boundary x = 0 (where the higher harmonics and their inverse influence on ω and

2ω are negligible). However, comparison with the analytical results definitely indicates that

the numerically predicted effects of the induced transparency and induced absorption near

the boundary are peculiar features of the hysteretic absorption (and not those of frequency

mixing and energy redistribution among ω, 2ω and higher harmonics).

Compact analytical solutions can be obtained for the boundary signal in Eq. (4.2) (∆φ =

π/4). In the following we use the notation θ = 2πτ in the arguments of the signals in

Eqs. (4.1) and (4.2). A simple analysis of Eq. (4.2) indicates that the strain is “simplex” if

the nondimensional parameter p = A1/4A2 satisfies the inequality p > 1. In other words,

the amplitude A2 of the “high-frequency” component at 2ω should be sufficiently small in

comparison with the amplitude of the “low-frequency” component at ω (A2 < A1/4). In

the simplex regime the process in Eq. (4.2) has the single maximum (sabs
min = A1 + A2 at

θ = 2πn, n = 0,±1,±2, . . .) and the single minimum (sabs
min = −A1 + A2 at θ = (2n + 1)π,

n = 0,±1,±2, . . .) over a wave period ((2n − 1)π ≤ θ < (2n + 1)π, n = 0,±1,±2, . . .). In

the following we consider for definiteness the period −π ≤ θ < π.

The process in Eq. (4.2) is “complex” in the parameter region p < 1. In the complex
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θ=(2n+1)π, ,...2,1,0 ±±=n ) over a wave period (  <≤− θπ)12( n  
π)12( +n , ,...2,1,0 ±±=n ). In the following we consider for definiteness the period 

πθπ <≤− . 
 The process in Eq. (4.2) is “complex” in the parameter region  1<p . In the complex 
process the amplitude and the position of the absolute maximum coincide with those in 
the simplex process (see Fig 18(a)), i.e. )41()0( 221max pAAAss abs +=+=== θ . In 

contrast, the absolute minimum of the simplex process transforms into the local 
maximum of the complex process )41()( 221max pAAAss loc −=+−=== πθ . Additionally 

two equal minima appear over a period =−±=== ± ))arccos(( )(
minmin pss θθ  

locspA max
2

2 )21( <+− . As a result in the considered complex process we have two maxima 

and two minima over a period (Fig. 18 (a)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.18. The normalized hysteretic stress (b) as a function of strain (a) for the process s=A1cosθ + A2cos2θ. 
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 Applying the rules formulated in the Section 2 it is straightforward to find the form 
of the nonlinear contribution to elastic modulus s∂∂ /σ  for the considered process in 
Eq. (4.2). Applying Eq. (2.9) and Eq. (2.10) in the simplex regime ( 1>p ) we get: 
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Integration of Eq. (5.1) provides the description of the nonlinear hysteretic contribution to 
stress: 
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Fig. 18. The normalized hysteretic stress (b) as a function of strain (a) for the process s = A1 cos θ+A2 cos 2θ.
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process the amplitude and the position of the absolute maximum coincide with those in

the simplex process (see Fig. 18(a)), i.e. sabs
max = s(θ = 0) = A1 + A2 = A2(1 + 4p). In

contrast, the absolute minimum of the simplex process transforms into the local maximum

of the complex process sloc
max = s(θ = π) = −A1 + A2 = A2(1 − 4p). Additionally two equal

minima appear over a period smin = s(θ = θ
(±)
min = ± arccos(−p)) = −A2(1 + 2p2) < sloc

max.

As a result in the considered complex process we have two maximas and two minimas over

a period (Fig. 18(a)).

Applying the rules formulated in Sec. 2 it is straightforward to find the form of the

nonlinear contribution to elastic modulus ∂σ/∂s for the considered process in Eq. (4.2).

Applying Eqs. (2.9) and (2.10) in the simplex regime (p > 1) we get:

∂σH

∂s
= −f0∆σ ×

{

s − sabs
min, −π < θ < 0 ,

sabs
max − s, 0 < θ < π .

(5.1)

Integration of Eq. (5.1) provides the description of the nonlinear hysteretic contribution to

stress:

σH =

{

σ(θ = −π) − f0∆σ(s − sabs
min)

2/2, −π ≤ θ ≤ 0 ,

σ(θ = 0) + f0∆σ(sabs
max − s)2/2, 0 ≤ θ ≤ π .

(5.2)

The relation between the integration constants σH(θ = −π) and σH(θ = 0) is provided

either by the continuity of the stress at θ = 0 (where s = sabs
max) or by the periodicity of the
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stress σH(θ = −π) = σH(θ = π) (note that s(θ = −π) = s(θ = π) = sabs
min):

σH(θ = 0) = σH(θ = −π) − f0∆σ(sabs
max − sabs

min)
2/2 . (5.3)

The solution for the hysteretic nonlinear stress in (5.2)–(5.3) is sufficient for the evaluation

of the hysteretic absorption because the undetermined component σH(θ = −π) of the stress

is constant over a period and, therefore, does not contribute to losses.

The generalization of the results in (5.1)–(5.3) for the complex regime (p < 1) is also

straightforward

∂σH

∂s
= −f0∆σ ×































sloc
max − s, −π < θ < θ

(−)
min ,

s − smin, θ
(−)
min < θ < 0 ,

sabs
max − s, 0 < θ < θ

(+)
min ,

s − smin, θ
(+)
min < θ < π .

σH = σH |θ=−π−
f0∆σ

2
×































−(sloc
max − s)2, −π ≤ θ ≤ θ

(−)
min ,

−(sloc
max − smin)

2 + (s − smin)
2, θ

(−)
min ≤ θ ≤ 0 ,

−(sloc
max − smin)

2 + (sabs
max − smin)

2 − (sabs
max − s)2, 0 ≤ θ ≤ θ

(+)
min ,

−(sloc
max − smin)

2 + (s − smin)
2, θ

(+)
min ≤ θ ≤ π .

(5.4)

In Fig. 18(b) we present the stress/strain hysteretic curve with a minor loop predicted in

Eq. (5.4) for the complex process (p < 1) of ω and 2ω mixing. Using the obtained form

of the nonlinear stress relationship we evaluate directly the energy density loss (E) over a

period. Furthermore, the overall hysteretic absorption is readily separated into the losses

over a period at frequency ω (E1) and at 2ω (E2):

E =

∮

σH(s)ds =

∫ +π

−π

σH [s(θ)] · (−A1 sin θ − 2A2 sin 2θ)dθ ≡ E1 + 2E2 . (5.5)

Here
∮

denotes the integration over a period of strain variation,

E1 = −A1

∫ +π

−π

σH [A1 cos θ + A2 cos 2θ] · sin θdθ ,

E2 = −A2

+π
∫

−π

σH [A1 cos θ + A2 cos 2θ] · sin 2θdθ .

The factor “2” on the right-hand-side of Eq. (5.5) takes into account that two periods of

the 2ω wave contribute to the hysteretic loss in a single period of total strain variation. We
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Fig. 19. Hysteretical losses D1 and D2 for different depths x as functions of the amplitude A1 (A2 = 1 =
const.) (a) and as functions of A2(A1 = 1 = const.), (b) calculated for the initial signal s(x = 0, τ ) =
A1 cos 2πf1τ + A2 cos 2πf2τ, f1 = 1, f2 = 2. The points represent analytical results.

also introduce the notations W1 and W2 for the energy densities at ω and 2ω averaged over

a wave period

W1 =
1

2π
ρ0c

2
0

∫ π

−π

(A1 cos θ)2dθ =
1

2
ρ0c

2
0A

2
1 ,

W1 =
1

2π
ρ0c

2
0

∫ π

−π

(A2 cos 2θ)2dθ =
1

2
ρ0c

2
0A

2
2 ,

and define the acoustic decrements (i.e. the inverse quality factors) characterizing the non-

linear hysteretic absorption at frequencies ω and 2ω by D1,2 = E1,2/2W1,2.

The evaluation of the decrements is carried out analytically. The final result is convenient

to be presented in normalized variables D1,2 = D1,2/D
0, A1,2 = A1,2/s

0, where s0 is the

characteristic strain amplitude and D0 = 4f0∆σs0/(3ρ0c
2
0) is the characteristic decrement,

which corresponds to hysteretic losses in a simplex sinusoidal process with strain amplitude

s0. For the description of the nonlinear hysteretic losses at frequency ω we derived

D1 =



















A1

(

1 − 1

5p2

)

, p > 1 (simplex) ,

A2

(

1 + 2p2 +
1

5
p4

)

, p < 1 (complex) .

(5.6)

The dependencies of the decrement D1 on the amplitudes A1 and A2 of the input waves are

illustrated in Figs. 19(a) and (b). The transition from the simplex to the complex regime (or
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vice versa) clearly influences the decrement of the 2ω wave. It manifests itself in the kinks in

the dependence D2 = D2(A1) at A1 = 4 (Fig. 19(a)) and in the dependence D2 = D2(A2)

at A2 = 0.25 (Fig. 19(b)). However, the influence of the simplex-complex transition on the

decrement of the ω wave looks much less pronounced.

In accordance with Eq. (5.6) when the component at 2ω is negligibly small (p → ∞)

the decrement at ω is proportional to its amplitude A1. We recover a classical feature

(D1 ∝ A1) of the hysteretic amplitude-dependent absorption of monochromatic wave.1–4,20

When the amplitude A2 increases then Eq. (5.6) predicts that in the simplex regime (p > 1)

the injection of 2ω causes the decrease of the decrement at ω. Qualitatively, for the “low-

frequency” signal at ω, the signal at 2ω can be treated as a “high-frequency” signal and

called the dither.32–34 Thus we can say that in the simplex regime the injection of a dither

induces the transparency for the wave at frequency ω. This effect is predicted here for the

first time. In Ref. 35 it has been demonstrated that in the medium with the hysteretic

quadratic nonlinearity a weak counter-propagating wave induces transparency for a strong

wave of the same frequency. The predicted effect of the absorption decrease was proportional

to the square of the weak wave amplitude (Eq. (29) in Ref. 35) similar to the result in

Eq. (5.6) where D1(simplex) = A1−(16/5)(A2
2/A1). However, the results of Ref. 35 cannot be

directly applied for the waves propagating in the same direction and of different frequencies.

The theory of the dithers in the materials with hysteretic quadratic nonlinearity in the

case of simplex processes might be developed by extending the formalism of the successive

approximations31 proposed earlier for the analysis of the absorption induced by a strong

pump wave for the weak probe wave propagating in the same direction. It could be an

interesting perspective for the future research in particular due the expected from Ref. 31

the possible dependence of the phenomenon on the relative phase of the low-frequency and

the high-frequency signals.

In line with Eq. (5.6) the transition to complex regime with decreasing parameter p

(increasing A2 for a fixed A1) introduces additional losses at frequency ω. These losses with

increasing A2 first compensate the transparency induced by the dither properties of the

2ω-wave and finally lead to induced hysteretic absorption proportional to A2. The latter

regime in the limit A2 � A1 was predicted earlier in Ref. 31. Importantly the analytical

result in (5.6) describes a peculiar transition between the limiting cases (A2 � A1 and

A2 � A1) both evaluated earlier. In this transition the competition of the properties of

2ω-wave as a dither and its ability to create internal loop in the hysteretic stress/strain

relationship leads to the existence of the critical amplitude Acr1
2 , which provides minimum

of losses at frequency ω (Acr1
2 = A1/(4

√

5/3
√

√

1 + 3/5 − 1) ≈ A1/2.7. The dependence of

D1 on A2 for a fixed A1 is presented in Fig. 19(b).

In contrast to the nonmonotonous behavior of D1(A2), decrement D1 as a function of A1

continuously rises with increasing A1 (∂D1/∂A1 ≥ 0, see Fig. 19(a)). The transition between

the regime A1 � A2 (where the absorption of ω induced by 2ω dominates, D1 ∝ A2
31)

and the regime A1 � A2 (dominated by self-absorption of ω, D1 ∝ A1
1,20) is monotonous.

The transition from complex to simplex regime (disappearance of the internal loop when

A1 = 4A2 ) has just a minor influence on this monotonic behavior.
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In a similar way for the nonlinear hysteretic losses at frequency 2ω we derived

D2 =



















8

5
A1, p > 1 (simplex) ,

A2

(

1 + 7p2 − p4 − 3

5
p6

)

, p < 1 (complex) .

(5.7)

In accordance with (5.7) the absorption of 2ω in the simplex regime (p > 1, A2 < A1/4) is

induced by the higher amplitude wave at frequency ω (induced absorption of a weak signal

wave is proportional to the amplitude of a pump wave D2 ∝ A1 as discussed in Ref. 31). Im-

portantly Eq. (5.7) predicts the complete absence of the hysteretic self-absorption of the 2ω

wave in the absence of the internal (minor) loop (i.e. ∂D2/∂A2 = 0 in the simplex process).

Amazing prediction contained in Eq. (5.7) is that the transition to complex regime with

increasing A2 (for a fixed A1) leads to the diminishing of losses at frequency 2ω. It means

that the appearance of self-absorption (which leads to increase of D2) is initially overcom-

pensated by the fall in the absorption of 2ω induced by the presence of the pump wave at

frequency ω. Thus the formation of the internal loop with increasing A2 is accompanied

by the effect of self-induced transparency (∂D2/∂A2 ≤ 0 for A2 ≥ A1/4, see Fig. 19(b)).

Surely with further increase of A2 the self-absorption of the 2ω wave becomes more and

more important, and in the limiting regime p � 1, A2 � A1 Eq. (5.7) predicts the dom-

inance of the hysteretic self-absorption (D2 ∝ A2 in accordance with the well-established

results1,20). This peculiar dependence of D2 on A2 is illustrated in Fig. 19(b). The minimum

of the losses at 2ω takes place at critical amplitude Acr2
2 = A1/(4

√

2/
√

3 − 1) ≈ A1/1.6,

which is different from Acr1
1 . The transition between the regime of self-absorption (D2 ∝ A2

when A1 � A2) to the regime of the pump-induced absorption (D2 ∝ A1 when A1 � A2)

with increasing amplitude of the wave at frequency ω is monotonous ∂D2/∂A1 ≥ 0 (see

Fig. 19(a)).

From the analysis presented above we conclude that (for the input signal in Eq. (4.2)) the

decrements D1,2 depend monotonously on the amplitude of the low-frequency (ω) wave and

nonmonotonously on the amplitude of the high-frequency (2ω, dither) wave. The peculiar

effects of the induced transparency and absorption are related to the properties of the 2ω-

wave as a dither and the influence of the transition from simplex to complex regime on the

induced absorption. All the effects predicted above for the local hysteretic absorption at the

boundary x = 0 are reflected in the evaluated numerically transformations accompanying

nonlinear wave propagation (see Fig. 17). In particular the transparency induced by a

small-amplitude 2ω-wave for the propagation of the ω-wave (Fig. 17(c)) is due to the dither

properties of the higher frequency wave for this particular phasing (∆φ = π/4) (Fig. 19(b)).

The self-induced transparency of the 2ω-wave (Fig. 17 (d)) is initiated by the formation of

the minor loop and the transition from the simplex to complex process with increasing A2

(Fig. 19(b)).

In Fig. 20 the results of the numerical calculation of the local hysteretic losses in the case

∆φ = 0 (Eq. (4.1), “sin + sin”) are presented. The most of the kinks in the dependences of
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Fig. 20. Hysteretical losses D1 and D2 for different depths x as functions of the amplitude A1 (A2 = 1 =
const.) (a) and as functions of A2 (A1 = 1 = const), (b) calculated for the initial signal s(x = 0, τ ) =
A1 sin 2πf1τ + A2 sin 2πf2τ, f1 = 1, f2 = 2.

the decrements D1 and D2 on the amplitudes of the input waves in Fig. 20 can be related to

the transition between the simplex and the complex regimes of the boundary oscillations.

There is a clear correspondence between these predictions and the phenomena of the induced

absorption and transparency at short propagation distances shown in Fig. 16. In particular,

the regime of the diminishing absorption of the 2ω-wave with the increasing amplitude of the

ω-wave can be clearly identified for the same interval 1.5A2 ≤ A1 ≤ 2A2 both in Fig. 16(b)

and in Fig. 20(a). The maximum amplitude A1 (the upper boundary A1 ≈ 2A2) for this

regime of the induced transparency is related to the transition from the complex to the

simplex regime in the acoustic emission from the boundary with the increasing amplitude

of the ω-wave. Interestingly the character of the dither effect (describing the influence of

the lower in amplitude higher frequency wave on the higher in amplitude lower frequency

wave) has changed the sign in the case ∆φ = 0 in comparison with the previous limiting case

∆φ = π/4. Injection of a weak 2ω-wave causes additional absorption (induced absorption) of

the ω-wave (∂D1/∂A2 > 0 for A2 � A1). The role of the two signals phasing on the process

of the nonlinear hysteretic absorption requires additional more detailed investigation in the

future.

6. Qualitative Discussion of the Effects Related to Nonlinear Hysteretic

Absorption

In the previous section it was demonstrated that the major contribution to the mutual

influence of the ω- and 2ω-waves at short propagation distances is provided by the process
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of the nonlinear hysteretic absorption. Unfortunately, deeper interpretation of the obtained

results is very difficult at least at the current level of our knowledge. Even the results for the

local hysteretic absorption presented in Figs. 19 and 20 look at first glance counterintuitive.

For example, with the analytical description of the stress/strain relationship Eqs. (5.2)–(5.4)

(simply by examining the contributions to the integral in Eq. (5.5)) the following can be

easily understood. Due to the formation of the internal loop the amplification of the 2ω-wave

in the simplex wave (that takes place near the absolute minima in θ = (2n+1)π in the case

∆φ = π/4) changes in the complex regime for its absorption in the same neighborhood of

θ = (2n+1)π. This is related to the change in the character of the extremum in θ = (2n+1)π

from the minimum in the simplex regime to the local maximum in the complex regime. So

the formation of the internal loop leads to the absorption increase for the 2ω-wave in the

time intervals where the system moves along the internal loop. This conclusion is also in

accordance with the expectation that in the asymptotic case A2 � A1 this internal loop

should provide half of the self-absorption of the 2ω-wave. However, this prediction makes the

result in Fig. 19(b), where the formation of the internal loop for A2 ≥ 0.25A1 leads to the

decrease of the decrement D2, at first glance counterintuitive. To explain the dependence

D2 = D2(A2) in Fig. 19(b) (obtained both numerically and analytically) we have to admit

that in reality the formation of the internal loop has a pronounced influence on the processes

taking place along the major loop. And, in fact, the transparency induced for the 2ω-wave

along the major loop overcompensates the absorption induced along the minor loop. Finally

this conclusion will stop looking counterintuitive if we remind that there is a memory in

the considered system in particular of the latest extremum. Consequently, the formation of

the minor loop by modifying the amplitudes of the extrema should have influence not only

on the local processes (along the internal loop), but on the processes along the major loop

as well. This influence results in the modification of the hysteretic absorption process over

the complete wave period.

There is an additional argument providing indication that in the neighborhood of the

transition from the simplex to the complex regime these are the processes along the main

hysteresis loop that play the major role in the case ∆φ = π/4 (“cos + cos”). The magnitude

of the contribution to the absorption (amplification) coming from the internal loop is small

due to the fact that the minor loop in this regime is located near the extrema of both ω and

2ω strain waves. Because of this the differential (ds) is small in Eq. (5.5) along the internal

loop. So the dominant role of the major loop is expected.

Let us apply the qualitative arguments listed above to the analysis of the regime ∆φ = 0

(“sin+ sin”, Eq. (4.1)). By the examination of Fig. 20(b) we conclude that the variation in

the absorption of the waves caused by the formation of the internal loop are again in anti-

phase. Indeed near the transition (A2 = 0.5A1) with the increasing 2ω-wave amplitude the

rate of the D1 variation decreases while the rate of the D2 variation rises. However, the sign

of the absorption variation does not change (the regime of the induced transparency is not

predicted in Fig. 20(b)). We may conclude that in this regime the leading role in the sound

absorption even after the formation of the minor loop plays the interval of the in-phase

variation of the strain in ω- and 2ω-waves ((2n − 1/2)π < θ < (2n + 1/2)π). This causes
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in-phase variation in the absorption of ω- and 2ω-waves even after the transition from

simplex to complex regime (with increasing A2). This conforms to our intuition because

for the “sin+ sin” regime near the transition we have in the interval (2n − 1/2)π < θ <

(2n + 1/2)π both the absolute maximum and the absolute minimum of the total strain

that are influenced but do not change their character when the minor loop is formed. We

remind that these are the extrema of the wave profile where (in accordance with the time-

domain analysis of the wave profile evolution) the hysteretic absorption is concentrated.

So we arrive to the conclusion that the temporal separation of the internal loop from the

absolute extrema (compare the regimes ∆φ = 0 and ∆φ = π/4) reduces the qualitative

influence of its formation on the losses both at ω and 2ω frequencies (compare Figs. 20(b)

and 19(b)).

The kinks in the variation of the losses in the regime ∆φ = 0 due to the transition

between the complex and the simplex regimes are also observed when the amplitude of the

ω-wave is varied near A1 = 2A2 (Fig. 20(a)). The changes in the rate of D1 and D2 variation

are again in anti-phase. We underline here that the anti-phase variation in the rate of the

absorption at ω and 2ω frequencies due to the transition between the simplex and complex

regimes is the general feature of the investigated phenomenon related to the fact that the

minor loop appears always in the time-interval of the anti-phase variation of strain in ω- and

2ω-waves (that is where in one wave it diminishes while in the other wave it increases, or

vice versa). It can be seen (Fig. 20(a)) that the regime of the induced transparency for the

2ω-wave can be induced by the increasing amplitude of the ω-wave just below the transition

from the complex to the simplex regime (1.5A2 ≤ A1 ≤ 2A2). Clearly in this interval of

the ω-wave amplitudes the diminishing of the 2ω-wave absorption due to the shrinkage of

the minor loop with increasing A1 overcomes increasing absorption induced by the increase

of the major loop. The regime of the induced transparency terminates at A1 = 2A2 when

with increasing A1 the internal loop disappears. Consequently, the conclusions drawn just

in the previous paragraph are not completely general. Even in the limiting case ∆φ = 0 the

rate of the absorption variation can change the sign due the transition between the simplex

and the complex regimes, although the influence of the transition on the absorption in the

system is less pronounced in the comparison with the regime ∆φ = π/4.

7. Conclusions

The numerical code is developed for the analysis of plane acoustic wave propagation in the

nonlinear mesoscopic materials. The results of both numerical and analytical investigation

of the wave frequency mixing process in materials with hysteretic quadratic nonlinearity

revealed multiple complex phenomena due to hysteresis and memory in the considered

materials. Most of the results were obtained for the case of the ω-wave the 2ω-wave mixing.

The transformation of the wave profile and the wave spectrum in nonlinear wave propa-

gation are investigated numerically and interpreted. It is demonstrated that for some phase

shifts between the ω- and 2ω-input waves the efficiency of the forth harmonic excitation

can exceed the efficiency of the third harmonic excitation. The transformation of a complex
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wave into a simplex wave in nonlinear propagation is demonstrated and the dependence of

the process on the relative phase of the ω- and 2ω-waves is explained by the influence of

the relative phase on the efficiency of the nonlinear hysteretic absorption at local extrema.

It is established that at short propagation distances the interaction of the ω- and 2ω-

waves is mainly through the mechanism of the nonlinear hysteretic absorption and is not

strongly influenced by the process of new spectral components generation and their inverse

influence on the input waves. Peculiar regimes of the induced transparency (where the

increasing amplitude of the ω(2ω)-wave leads to fall in the absorption of 2ω(ω)-wave) are

predicted both numerically and analytically, and qualitatively interpreted. The regime of the

self-induced transparency (where in the presence of the ω-wave the increasing amplitude

of the 2ω-wave induces fall in the absorption of the 2ω-wave) is also demonstrated and

explained qualitatively. The role of the transition from the emission of the simplex wave to

the emission of the complex wave (or vice versa) in the process of the induced absorption

and transparency is identified.

The obtained results are expected to find applications in the nondestructive evaluation

of the mesoscopic materials and in seismology.
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