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The numerical scheme for the analysis of the acoustic wave transformation in materials with nonlin-
earity hysteresis and end-point memory is developed. Both numerical and analytical predictions are
obtained concerning mixing of a wave at fundamental frequency (w-wave) and a wave at doubled
frequency (2w-wave) in the materials with hysteretic quadratic nonlinearity. The observed wave
spectrum broadening is found to be in qualitative agreement with the selection rules for the multi-
phonon processes in this type of materials. The predicted transformation of an initially complex
wave (with four extrema over a period) into a simplex wave (with two extrema over a period) in non-
linear propagation is found to be one of the manifestations of the nonlinear hysteretic absorption.
It is demonstrated that at short propagation distances the interaction of the w- and 2w-waves is
mainly through the mechanism of the nonlinear hysteretic absorption and is not strongly influenced
by the process of higher harmonics generation and their inverse influence on the input waves. The
regimes of the induced and self-induced transparency are predicted. The influence of the transition
from the simplex wave to complex wave emission (or vice versa) on the processes of the induced
absorption and transparency is identified.

Keywords: Hysteresis; nonlinear acoustics; two frequency mixing induced transparency; induced
absorption.
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1. Introduction

Stimulated by pioneer acoustic experiments in vibrating metallic rods'? there is still a sta-
ble interest to the investigation of the nonlinear wave phenomena in materials exhibiting
hysteresis in their nonlinear properties. The nonlinear acoustic experiments conducted in
different type of materials (including, for example, polycrystalline metals,' * rocks®® and
ceramics?) lead to the conclusion on the universality of the observed nonlinear acoustic
effects in the sense that they are characteristic of a large class of micro-inhomogeneous
materials.>19 An additional term “mesoscopic” for the notation of these materials has been
introduced quite recently.'® This term emphasizes that the acoustic nonlinearity of the ma-
terial is due to some mechanical features in its structure, which are significantly bigger than
the interatomic distances, but significantly smaller than the acoustic wavelength. Hysteresis
in the strain—strain relationship is, however, only one feature of a rich variety of remarkable
nonlinear properties of micro-inhomogeneous (mesoscopic) materials.® =13 Another fasci-
nating feature is the property of these materials to memorize their mechanical (acoustical)
loading history.!#1® For example, the current behavior of the material depends on the mag-
nitude of the latest extremum in the stress/strain history, furthermore, some of the other
extrema in the loading/unloading history are also memorized (the end-point memory'6-19).
In particular, the material always remembers the extremum previous to the latest one, as
well as the absolute maximum and the absolute minimum of the loading history.

Both the end-point memory and the nonlinearity hysteresis can be success-
fully phenomenologically modeled using the so-called Preisach-Mayergoyz (PM) space
formalism.!07'® This is a mathematical tool elaborated by Krasnoselskii'® for a phys-
ical model proposed by Preisach for magnetic hysteresis.'® A theorem important for
the representation of actual hysteresis nonlinearities by Preisach’s model was proven by
Mayergoyz.' 18
to external excitation is a linear superposition of the individual responses of hysteretic
mesoscopic mechanical elements (see the next section for the details).

In the theoretical analysis of the nonlinear acoustic phenomena in the framework of the
PM-space phenomenology the mathematical complexity is caused rather by the memory
effects than by the hysteresis in nonlinearity. If the acoustic wave (incident on a mesoscopic
material) induces sufficiently simple loading history then complete analytical description of

In the PM-space approach it is assumed that the response of a material

the nonlinear wave evolution is possible.?°72? Exact analytical solutions are obtained?0 22
for the so-called “simplex” waves,?? i.e. periodic waves with a single maximum and a single
minimum over a period. Qualitatively this became possible because there were only two end-
points (extrema) to be kept in memory during wave profile transformation. If an acoustic
wave contains over a period additionally to the absolute extrema also some local ones
(“complex” wave??), then the problem of memorizing and erasing of the end-points in the
process of wave propagation becomes hardly tractable analytically. Here is exactly a point
where numerical modeling should help us in understanding the fundamental laws of the

nonlinear wave interactions in mesoscopic materials.
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In the present paper we develop a numerical scheme for the evaluation of the nonlinear
propagation of an arbitrary acoustic signal and present the results of this simulation for
the initially biharmonic signal. The acoustic wave at the boundary is composed of two har-
monic waves at a fundamental (w) and doubled (2w) frequency. We simulated the nonlinear
transformation of the wave profile for different relative amplitudes and phases of the initial
waves at w and 2w as well as the transformation of the frequency spectrum of the total wave.
Our results indicate an important contribution of the forth harmonic (4w) to the spectrum
of the signal. The transformation of a complex wave into a simplex wave in the nonlinear
propagation is demonstrated and the dependence of the process on the relative phase of
the w- and 2w-waves is explained. Peculiar regimes of the induced transparency (where the
increasing amplitude of the w(2w)-wave leads to fall in the absorption of 2w(w)-wave) are
predicted both numerically and analytically. The regime of the self-induced transparency
(where in the presence of the w-wave the increasing amplitude of the 2w-wave induces fall
in the absorption of the 2w-wave) is also predicted. These predictions are explained as a
manifestation of the nonlinear hysteretic absorption in the case of two-frequencies mixing.
The role of the transition from the emission of the simplex wave to the emission of the
complex wave (or vice versa) in the process of the induced absorption and transparency is
identified.

The article is organized as follows. In Sec. 2 we remind the mathematical formalism
of the phenomenological description of nonlinear acoustic wave propagation in mesoscopic
materials. In Sec. 3 the numerical integration scheme is presented and tested against the
analytical results available for the nonlinear propagation of the initially sinusoidal wave.
Section 4 provides the results of the numerical modeling of the simplex and complex waves
propagation in the case of the biharmonic initial signal. In Sec. 5, on the basis of the
analytical analysis the role of the nonlinear hysteretic absorption in the phenomena under
the investigation is revealed. The article is terminated by the discussion (Sec. 6) and the
conclusions (Sec. 7).

2. Evolution Equation for Medium with Hysteretic Nonlinearity

We start with the wave equation of propagation of a plain acoustic wave:

Pu 0%\ _ doy
PO\ o2 " D9z2) T o

written for the particle displacement u (parallel to the direction of the wave propagation).
Here ¢ is the sound velocity, oy is a contribution to the stress due to presence of hysteretic
elements. So in this model we do not take into account “classical” nonlinearity, concentrating
on hysteretic nonlinearity only.2922

Using the well-known method of a slowly varying wave profile (multiple scale technique)
described, for example, in Ref. 24, we arrive to the “shortened” (evolution) equation for

slowly varying profile of strain s ~ du/0Jx in the wave propagating in the positive direction
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of z-axis
ds ds
— — =0. 2.1
(e o (21)
Here 7 = t — x/co denotes the “fast” retarded time, x is the “slow” evolution coordinate,
and
1 Ooy
=— —_—. 2.2
v(x,T) 2pocd s (2.2)

Equation (2.1) in partial derivatives is known to be equivalent to a system of two ordinary
differential equations?*~2%: ds/dx = 0, dr/dx = v. Consequently from the physics point of
view the function v(x,7) describes the time shift dr of a point of the wave profile in the
accompanying coordinate system with increasing propagation distance dr = vdz. Although
v(x,7) has the dimension of the inverse velocity we will, following the tradition,? call it the
“velocity” of the wave profile point on the plane (s, 7). In fact it is possible just from the
beginning to choose instead of the slow coordinate z a slow time ¢ = /¢ simultaneously
using a fast coordinate & = x — cot = —co7 instead of the fast time.26 Then Eq. (2.1)
transforms into ds/0t — c3vds/0¢ = 0 and the coefficient in front of the second term
has not only a sense of velocity, but also the dimension of the velocity. However here we
prefer to analyze wave evolution as a function of the propagation distance and not of the
propagation time (although the two descriptions are directly related) but keeping the term
“velocity” for v(x, 7). Please note that, surely, it is also possible to use in the multiple scale
approach for the derivation of the evolution equation both (slow and fast) variables with the
same dimension of length (or time). The differences between all possible forms of evolution
equation can be eliminated by a suitable choice of the normalized nondimensional variables.

In accordance with Eq. (2.2) the velocity v(z, 7) is directly proportional to the derivative
Oo g /Os of the stress—strain relationship oy (s). Consequently one should add an equation of
state (i.e. stress—strain relationship) in order to complete the model. Following the ideas of
the Preisach—-Mayergoyz space formalism we assume here that the nonlinear contribution to
stress can be represented by a linear superposition of the contributions oy from individual
mesoscopic hysteretic mechanical elements:

on(s(z,7) = 3 o (2.3)

Mex

Here subscript M marks mechanical elements in the elementary volume at a coordinate x.
For the application of the continuous elasticity theory to the analysis of the wave propaga-
tion stress should be locally defined in each elementary volume (point) with the dimensions
much less than the acoustic wavelength. At the same time it is assumed that an elementary
volume contains a huge number of the hysteretic mechanical elements with the dimensions
significantly exceeding inter-atomic length scale (mesoscopic elements).

Equation (2.3) formally corresponds to the action of the noninteracting mechanical el-
ements in the elementary volume in parallel (summation of forces). The derivation of the
stress/strain relationship for the mesoscopic material can also be achieved starting from the
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statement that the change of the elementary volume in the material is a result of a linear
superposition of the volume changes exhibited by the individual mechanical elements.'®
The latter statement formally corresponds to the action of the noninteracting mechanical
elements in the elementary volume in sequence (summation of the displacements). Using
Eq. (2.3) and the strain-strain PM-space we derive (as it is demonstrated in Ref. 21 and
later here) the nonlinear dependence of stress on strain, while the summation of the volume
changes implies the utilization of the stress-stress PM-space!® and leads to the dependence
of strain on stress. The latter should be inverted to get the dependence of stress on strain
required by Eq. (2.2). Importantly in the framework of the nonlinear acoustics these two
approaches provide the equivalent results.

It is worth reminding here that nonlinear acoustics by its definition investigates waves
with low acoustic Mach numbers. In nonlinear acoustics the deviation fxyr(o) of the
strain/stress relationship s(o) from the Hooke’s law is always small: s = o/FE + fnr(0),
|fnr(0)] < |o/E|. Here 0 and E denote the stress and the elastic modulus, respectively.
Due to |fyr(0)| < |o/E|, in order to transform s(o) relationship into o(s) relationship
(which is more convenient for deriving the acoustic wave equation) it is sufficient to use the

Hooke’s law approximation s = o/F for the inversion of the nonlinear term!?:

o= E[S — fNL(ES)] .

It is important that the functional form of the nonlinear terms in both s(o) and o(s)
relationships is the same in nonlinear acoustics. As a consequence for nonlinear acoustics
there is no difference which one of the PM-spaces with homogeneous distribution of the
elements (i.e. stress-stress or strain-strain) is used for the modeling of the hysteretic nonlin-
earity. For the direct modeling of the strain/stress relationship the stress-stress PM-space
should be applied. We prefer to use strain-strain PM space because it provides directly the
stress/strain relationship for the substitution in the wave equation.?!

The goal of further consideration is to analyze the typical influence of hysteretic ele-
ments on the nonlinear distortion of signal shape. So let us consider the simplest hysteretic
function of a rectangular shape for individual mesoscopic element (Fig. 1). Here we note
that the hysteretic element used by us here in the strain-strain PM-space transforms (with
an accuracy of the second order of smallness) in the hysteretic element used by others in
the stress-stress PM-space!® by applying the Hooke’s relation between s and o (that is via
the substitution of o /F for s and of E's for o at the axes of Fig. 1). This once again ensures
the equivalency of the two approaches in the framework of the nonlinear acoustics.

The introduction of the model element means that we have turned from study of a com-
plicated system consisting of multiple microscopic cracks (or defects) to the consideration
of fictional elements, that can be found in one of two states: “open” or “closed” (one de-
notes these states as S(M) =“O” and S(M) = “C”, respectively). The parameters of such
an element are just o.,0,, S¢, So- Here s, is a value of strain at which the element opens
while we increase s, and s, is a value needed to close it if strain decreases (s. < s,). We
also admit instantaneous switching.
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Fig. 1. A hysteretic model of an individual mesoscopic element M. The element is parameterized by values
of so, 8¢, and Ao = o¢ — 0o.

In order to evaluate the derivative dog/0s = ) e, Oon/0s one needs to differentiate
the curve plotted in Fig. 1:

8;—1\/[ =Ac©O <s,so,sc,sign <§> ,S(M)) , Aoc=o0.—0,>0,

s or
where
0(s —80), ifS(M)=*C", 0s/0T >0
(om0 T
0, if S(M) = “O”, 9s/oT >0

and then calculate the velocity in Eq. (2.2). Note that at each value of strain after calculation
of the derivative given by Eq. (2.4) we must keep track of the state S(M), reassigning
S(M) = “O” in the first case in Eq. (2.4) (with (s — s,)) and S(M) = “C” in the second
case (with 0(s — s¢)). In other words, the state S(M) of an element M depends not only on
the current value of strain but also on the strain rate:

“O”, if s, <s

“O7, if s, <s< s, 0s/0T <0

(M) = eSS GOm0 25)
“«C7,  if s <.
“« 07, if s <s<s,, 0s/0T >0
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as it is illustrated in Fig. 1. Here one should stress the principal feature of the system
under study: only the elements changing their state under a current s contribute to stress
variation. This is easy to understand if we note that a nonzero derivative in Eq. (2.4) can
be found only in cases with delta functions, when according to Eq. (2.5) the state change
to the opposite one.

Then for simplicity one considers Ao = o, — 0, for all the elements to be equal and
independent of x, and parameters s, and s. to be uniformly distributed in the triangle
A = {(80,8:): =5 < Sp < 8, =8 < S¢ < So}. This means that the distribution function
f(so,8c) = fo = const. (here f(so,sc)dseds. is the number of mechanical elements in the
PM-rectangle (so, So + dso) X (8¢, Sc + dsc)). Certainly for further numerical analysis these
assumptions are not that important: we could consider two nontrivial distributions f(s,, s¢)
and fy(Ac) (if Ao for all the elements are not equal) both dependent on x, if necessary.
Note that despite of the use of the simplest distributions for Ao and (s,, s.), the parameter
5 (related to the size of PM-triangle containing mechanical elements) is still left arbitrary.
It must be, however, larger than amplitude of strain oscillations.

Making use of the above simplifications and changing the summation in Eq. (2.3) for
integration, one writes:

aO.H B +oo +oo 80‘M
K —/;Oo dsc/_oo dsogf(so,sc)

:foAa/ Odsc/ ds,© <s,so,sc,sign (?) 7S(M)) . (2.6)
—3 Se T

The Egs. (2.1), (2.2), (2.4) and (2.6) become a complete set of equations describing the
strain wave propagating in a material with hysteretic mesoscopic elements.
We also have to add the boundary condition:

s(x =0, 7) = sp(7) (2.7)
and the initial condition for the state of the elements
S(M)[.—o = So(M), (2.8)

that can, in general, depend on x.

For graphical illustration of mesoscopic elements switching we have plotted Fig. 2(a),
that contains a series of pictures in PM-space, corresponding to different points (0-15) of
the strain curve s(7) in Fig. 2(b). The strain evolution presented in Fig. 2(b) is chosen
rather arbitrary.

If a given point s is located on the part of the wave profile with a positive value of the
strain rate, then all elements at the left of a vertical line s, = s in PM-space are open. This
line moves to the right as the strain s(7) increases, switching all closed elements it is passing
through. After reaching strain maximum the “switching line” becomes horizontal (s, = s),
it moves down, closing the elements over it. This process continues until a minimum of
s(7) is achieved, and then turns again to opening (by the vertical line s, = s). Thus the



326 V. Aleshin, V. Gusev & V. Yu. Zaitsev

AN
\

12 13 14 15

2
1\ 3 1 (b)
7 8 3
0 &/ 10 >
4 6 9 T
5 14

15

Fig. 2. Illustration of switching in PM-space. The pictures 0-15 (a) are patterns in (so, s¢)-PM-space corre-
sponding to the points on the strain curve s(7) below (b). The arrows indicate the direction of switching.
Areas containing open elements are plotted in light gray, areas containing the closed ones are dark gray.
The “switching lines” are marked by thin lines in each portrait, the “switching sections” are thicker. The
pictures 2, 5, 7, 9, 12, 15 correspond to the end points (local extrema of s(7)).

distribution of open and closed elements at any moment of time 7 depends on extrema
of strain curve in preceding moments. However, the system does not “remember” all the
extrema achieved in the past. During the evolution the tracking on some of them is lost. For
example, the states 8-10 in Fig. 2 contain the information on the preceding weak maximum
7, but passing to the state 11 erases the memory about it.

Now let us examine the evolution of the velocity v(w,7) = —(2pocd) 100y /0s
(Eq. (2.2)), that describes deformation of strain profile and is a key point of all our con-
structions. First imagine that all elements located to the right of the “opening” line s, = s
were initially closed. Then © in Eq. (2.4) equals to (s — s,), and Eq. (2.6) gives?!:
aO'H So 5 s ~
55 = —foAo /_S dsc/s ds,d(s — s) = —foAo /_S ds. = —foAo(s+5), (2.9)

that is, in fact, just the length of this line (multiplied by fopAo). In the case of closing the
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situation is similar:

Ooy

So 3 3
— = —fOAU/ dsc/ ds,d(s — sc) = —fOAU/ ds, = —foAo(s—s). (2.10)
88 -8 Se S

Now, if we take into account that in reality not all the elements of the line are switched
(i.e. some of them are in the same state before and after the passage of the switching line),
we conclude that s + s in the above equations has to be replaced by the section of the
switching line providing the boundary between open and closed areas in PM-space. In all
PM-patterns of Fig. 2 such “switching sections” are marked by thicker lines. This is just
another (graphical) interpretation of the Eqgs. (2.4)—(2.6) showing that only the elements
changing their state at a given 7 will give a contribution to the nonlinearity.

So, generally speaking, the process of strain wave propagation in a medium with hys-
teretic elements has the memory about its history, namely about some of strain extrema.
Thus, unfortunately, further analytical consideration encounters serious difficulties, since
one has to keep track on the state S(M) of mesoscopic elements, solving the system of
Egs. (2.1), (2.2), (2.4)-(2.8), that contains both continuous and discrete functions.

Such statement of the problem is rather complete, but it has a serious disadvantage: the
solution will depend on some arbitrary parameters, as the initial configuration of open and
closed areas in PM-space (in a real experimental situation we do not know it in advance),
together with the outer limit of PM-triangle. However, if we consider a periodical signal, then
after passing one period this configuration will be erased. Of course, the second period will
still carry some information on the initial state, since the first one when erasing the initial
state was additionally distorted. But the subsequent periods will contain this information
in lesser and lesser degree. In other words, we expect that after passing a large number
of cycles the process will converge to a stationary one. This means that the acoustic wave
“prepares” the medium for itself.?? This stationary solution in the “prepared” medium is a
goal of our consideration.

Let us compare the method proposed above and the numerical simulation LISA (local
interaction simulation approach), reported in a cycle or papers by M. Scalerandi, P. P.
Delsanto et al. (see, for example, Refs. 27 and 28). The latter also assumes 1D geometry
and PM-distribution of hysteretic units and produces quite similar results in the case of the
sinusoidal input (in particular, odd-order harmonics dominance in the spectrum). However,
instead of a continuous medium LISA considers a discrete system (a chain) of mechanical
elements, which can be elastic and /or hysteretic. An element at a coordinate x corresponds
to a point in PM-space, whereas in the description above one z-point corresponds to a whole
PM-space, since the summation (Eq. (2.3)) is applied over all hysteretic units belonging to
a physically small volume. As soon as a model for the hysteretic elements is chosen and the
statistical distribution of their parameters is known both approaches should provide equiva-
lent results for long acoustic waves. We perform analytically the averaging (homogenization)
of the material properties, while LISA does this in the process of numerical computing. This
difference is demonstrated by results?”2® obtained by LISA, which are affected by uncer-
tainty coming from the fact that each x-point has random (and not averaged) hysteretic
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properties. In our opinion, the major advantage of LISA is in its future possible application
to the analysis of short waves propagation, where there are just a few different hysteretic
elements at the scale of the acoustic wavelength and the homogenization is not possible.

3. Numerical Solution of the Evolution Equation
3.1. Numerical integration scheme

Now let us turn to the numerical procedure we have developed for realization of the afore-
mentioned goal. First we introduce dimensionless variables, assuming a periodic strain wave
at the boundary (z = 0) with a period 70 and characteristic strain value s°. These variables
are:

0 0
T S x T T
T=—,8=5,2="—,v=0v—, ¢g=co— (3.1)
T S Tnl In Tnl
where
270,0008
Inl — A7 0 (32)
Adfos

is a characteristic length of the nonlinear interaction.?° 22 Below in the text the primes are
omitted.

Methods of solving the transport equation (Eq. (2.1)) are well known. We have used a
symmetrical scheme with centered finite differences given by:

A (557 = 0) b (58— sh) (s — s + e (s — ) =0, (33)
Here 33- = s(zy,75), i=1,..., Nz, j=1,..., N, is the discrete strain function, defined on
the grid z; = Az(i—1), 7; = A7(j — 1) where the steps Az = X/(N,—1), AT =T/(N,—1)
and X and T are intervals of consideration for space and time, respectively (all variables
are dimensionless).

This scheme has the second order of approximation and requires the common stability
conditions:

Umax AT < AT, (3.4)

but in order to run it we need some additional information about strain values at the next
x-layer i + 1. Here we have two possibilities as following:

(i) The most direct way is to start with the state depicted in Fig. 2(0), where all elements
with s. > 0 are closed and the elements s. < 0 are open (or any other similar distribution
containing initially open and initially closed elements). In addition we also have to consider
a signal on entry (the boundary condition s,(7)) starting with increasing front and having
sp(0) = 0. Such a configuration on open and closed areas will lead to the velocity v to be 0
at the first moment of time. Indeed, the switching section AB in Fig. 2(1) has zero length
at the moment 7 = 0. This means that the first point (7 = 0) of the strain profile will never
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Fig. 3. Illustration of the transition process: the nonlinear distortion of a strain sinewave s(z = 0,7) =
sin 277, calculated for different depths x. The outer limit of PM-space: § = 2.

be shifted and we can fix s(z,0) = 0, i.e. s{ = 0 for each point z;. Then, having sjl = sp(75)

_ i _ _ i+1 i i+l
at =0, s] =0 at 7 =0, we calculate s;\; from known values of s}, s} 4, s;
i+l _ i i+1
Sit1 = F(Sj7 Sj+1:5; ) (3.5)

i+1
A

This scheme is valid if the velocity of the strain profile’s translation v 2]+O for every
number ¢ and j, because only in this case the profile shifts entirely in the positive direction,
so that all s{ are retained undistorted (and equal to 0). Note that this condition is obviously
fulfilled (see Egs. (2.2) and (2.4)).

The main disadvantage of such an approach is that we have in this case a long transient

process before achieving the stationary solution. For instance, the starting point of the first

where function F' can be easily found by resolving Eq. (3.3) with respect to s

period of the strain curve is unmovable, but the starting points of all other cycles will be
shifted, because at these points we have nonzero value of v. Running ahead, we plotted in
Fig. 3 such transitional process, when the stationary strain profile is greatly distorted by
the influence of the initial condition.

Therefore we preferred another method consisting of computing the stationary profile
itself as described below.

(ii) For periodic excitation, let us consider periodic conditions for each strain curve
against time. This means that one defines additional (N, + 1)th point of the time dis-
cretization, assuming S§V7—+1 = 5% and the same step 5§VT+1 — 5?\77 =AT (i=1,...,Ny,).
Then we have a complete system of equations for a new z-layer 7 + 1. To solve it, we have
used iterative method as following: define an iteration sequence §§-k) for the kth iteration
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Fig. 4. The parametrization of PM-space configuration by the corner points A1, Ao, ..., A, ..., Ay, of the

boundary between open (light gray) and closed (dark gray) areas. The “switching line” is A1S, the “switching
section” is A1 As.

and (i 4+ 1)th z-layer, admit 551) = si, then compute 5521 = F(sé,séﬂ,é;l)) in order to
have 55\2 41, then use the periodical condition and fix 552) = 55\172 41, ete. Calculations show
it+1 i+1

that the second iteration is already sufficient to achieve the equality siy " | = s}

However, this is still not enough to run the numerical scheme. To calculate the strain
profile at the next x-step ¢ + 1 we also need to know the configuration of open and closed
areas in PM-space in the beginning of each period. Otherwise it is impossible to obtain
the value v that is presented in Eq. (3.3). To fix such a configuration we use the following
fact: for a periodical signal one can start moving to the next z-layer ¢ + 1 according to
Eq. (3.4), taking any arbitrary 7-index j = j; as initial and substituting the points with
lesser numbers j to the end of the strain curve. That is, we redefine the strain profile as:

§ s=siforji<j<N;, Sy ga=sfor1<j<j—1, (3.6)

and then use Eq. (3.5) to obtain the sequence §§+1, j=1,...,N,. Now, if we take j; at the
point of global maximum ‘9;’1 = Smax Of the strain sg- at the current x-layer, the corresponding
PM-pattern is known: all elements are open. In this manner, we start calculations for the
shift to the global maximum strain profile first using Eq. (3.5) and then performing the back
substitution §; — 5;" according to Eq. (3.6). The hats in the denotations will be omitted for
brevity.

The stability condition (Eq. (3.4)) for a stationary solution takes the form: (Smax —
Smin) Az < A since the maximum v does not exceed the maximum strain peak-to-peak

amplitude.
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This method was chosen for performing all further computations, because it yields
strictly periodical (i.e. stationary) solution without having a need to consider many pe-
riods in order to reach the convergence. Thus we found an appropriate algorithm to obtain
v without time-consuming direct consideration of transient processes.

3.2. Calculation of the nonlinear coefficients of the numerical scheme

The numerical scheme based on Eq. (3.3) has a nonlinear coefficient — the velocity v of
strain profile’s deformation, or, in other words, the derivative do/0s of the stress—strain
relationship (Eq. (2.2)). First of all, in order to proceed from ith z-layer to (i + 1)th, the
only possibility we have is to take all nonlinear coefficients at ith layer, where all variables
are known. In the dimensionless variables this velocity is given by the expression:

1)(371-,7']') :/_O dsc/ ds,© (s,so,sc,sign <%> 7S(M)) : (3'7)

The r.h.s. of this equation, as it was demonstrated above, corresponds to the length of the
section of the boundary between open and closed sectors in PM-space determined by the
straight lines s, = s or s, = s (see Fig. 2). Since the chosen scheme is symmetrical, it is
reasonable to substitute s here by 1/ 2(8; + sé. +1) to keep the order of approximation.

To calculate numerically the length of the switching section one needs first to parameter-
ize a configuration of open and closed areas of PM-space. As the orientation of the switching
section is always vertical or horizontal, and it opens all elements at the left of it (if it is
vertical) and closes all elements above it (if it is horizontal), any arbitrary complicated
pattern always consists of two areas (one fully open and one fully closed) and a staircase
(stepwise) boundary between them.!™!® Such a boundary is represented by the broken line
AyAs, ... Ay, ..., AL in Fig. 4. So, any possible configuration of PM-space under acoustical
excitation is completely described by the coordinates of these end-points, which we denote
as A; = (0,Cy), Il =1,...,L (see Fig. 4). The point A; lays on the diagonal and has the
coordinates (s, s), all the other corner points are to be kept in memory. After such param-
eterization, in order to obtain the velocity v (the length of the section AjA3) on a given
z-layer for every 7-point, one needs to shift the points A; and As in accordance with tem-
poral strain variations s(7), erasing the points Ay and Ag if at one moment they coincide,
and creating a new Aj-point on the diagonal, if one of the extrema of s(7) is reached. This
procedure in details looks like the following.

First, on a fixed z;-layer we find the global extrema spax and syin of s; (superscript i is
omitted) and then shift the strain profile according to Eq. (3.6) in order to begin with the
global maximum. At that position we take fully open PM-space, defining A1 A, section at the
left boundary of PM-space: A1 = (Smax, Smax)s A2 = (Smax; Smin), and start cycles j — j+1.
In each cycle we analyze whether the current strain value s;;1 belongs to an increasing or
decreasing front of the strain profile (just comparing s; and s;i1). Considering now for
definiteness an increasing front (opening), we reassign the coordinates O and Os of the
first two corner points to the value s = (s; + sj41.)/2 (See Fig. 4) If the new coordinates
01 and Os exceed the value Oz, the memory about the 2nd and the 3rd points should be
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erased; we delete these points and renumerate the arrays O; and Cj so that the former 4th
point becomes the 2nd, 5th becomes 3rd, etc.

If the current strain value s;11 is located in the very beginning of the increasing front
(i.e. s; was a local minimum over j) we have to introduce a new point A;, shifting the
indices of all old points by +1. In this way we keep tracking of all local extrema until they
are exceeded by larger excursions of strain.

After having the first two points shifted (and, if necessary, renumbering the points)
we take the searched nonlinear velocity to be equal to v = (s; + sé 4+1)/2 — Cy. In the
case of a decreasing slope of the strain curve the procedure is analogous, and the velocity
v=07— (s; + s;~+1)/2 . In this way we repeat the procedure until j = N, and then proceed
to the next z-layer according to Eq. (3.5).

The proposed algorithm appears to be an exact solution of finite-difference equation
(Eq. (3.3)), that is the second order of approximation of the initial differential Eq. (2.1).
Keeping track of the state of mesoscopic elements and searching for a stationary solution,
we did not use any additional assumptions.

3.3. Testing the numerical scheme

In order to examine the precision provided by the discussed method we have used the
analytical solution for the dimensionless equation:

0s , Os 0Os .
7 + {smax(a:) + sign <E> s] 5 = 0, s(x=0,7) =sin2n7

that describes the strain wave propagation for the harmonic excitation. This solution in the

20,
s(z,T) = sin [7- _ /Oz Smax (§)d€ — sign <%> sx] ,

implicit form<":

is a transcendental algebraic equation. Here $pax(x) is the depth dependence of maximum
of s(xz,7), that is also an unknown function, that results in the profile’s shift during the
propagation:

T =T /0 Smax(§)dE = 0. (3.8)

Solving numerically the equation s(z,6) = sin[f — sign(ds/d0)sx] with very high accuracy
(just by the conventional bisectional method, taking the middle point of a current interval
for the solution and comparing the r.h.s. and Lh.s. of the equation), we found the shifted
profile s(x,#), estimated its maximum and recovered s(z,7). All test computations were
performed for the maximal (deepest) x = X, the precision for smaller z being better.

The agreement between the strain profiles calculated via the implicit analytical solution
Eq. (3.8) and the above described iteration procedure was found within 0.6% for the number
of points in the finite-difference scheme Eq. (3.3) N, = 10000, N, = 8192, and T' = 1,
X = 0.5 (T and X are spatial and time intervals considered). This accuracy is affected
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Fig. 5. The nonlinear distortion of a strain wave s(z = 0,7) = sin 277, calculated at different depths x. The
accuracy achieved for N; = 10000, N = 8192, T =1 and X = 0.5 is 0.6%.

mainly by an uncertainty of the extrema positions, since they play a key role in constructing
the solution, but are defined with a lower order accuracy (the 1st order in A7). Further,
since a maximum of a strain profile has the uncertainty of A7, the cumulative effect for
the deepest N,th profile can be roughly estimated as A7y/N, (in our case we had actually
the uncertainty values about 10A7 = 0.0012 of a period). It was checked that, varying the
7-shift of the iterated profile as a whole and matching it to the exact solution, one has much
better accuracy of about 0.01%. We hope that for most applications such a small shift is
not important, since it will not influence the strain spectrum, which is of the main interest.
Otherwise, it is possible to introduce an additional complication of the algorithm, making
use of a more accurate approximation for the strain profile near its maximum.

Due to the above mentioned reasons together with the asymmetric approximation of the
nonlinearity (corresponding to the ith layer, but not to the middle between the ith and the
(i 4+ 1)th layers) the resultant order of approximation for the proposed method is less than
2.

The calculated test strain profiles for the sinusoidal signal are shown in Fig. 5. They
exhibit all known features for this case?’: the nonlinear attenuation (described by smax(z))
the nonlinear decrease of sound velocity, the convergence to a saw-like shape at large depths.

We have also tested the accuracy of the calculation results in terms of the strain har-
monics Z,(z):

$(z,7) = Zn(x)sin(2mnT + ¢p(2)). (3.9)
n=0



334 V. Aleshin, V. Gusev & V. Yu. Zaitsev

o©

o

\I
J

o
o
o

o
Q
a

o
Q
®

spectral amplitudes Z,(x)
o o
N I

00 01 02 03 04 05
depth x

Fig. 6. The generation of the harmonics during the propagation of the single frequency signal: the amplitudes
Zn of harmonics against the depth z. The points indicate the spectral amplitudes Eq. (3.9) for the exact
solution Eq. (3.8).

The calculation indicated that for a pure sinusoidal wave s(z = 0,7) = sin277 at the
boundary (i.e. Z,(0) = 0;,,) only odd harmonics are generated, in agreement with Refs. 20,
21 and 23. The depth dependencies of the calculated strain harmonics are shown in Fig. 6
by solid lines, and the harmonics for the exact solution Eq. (3.8) are marked by filled circles.
For the chosen numbers of points the precision is found to be 0.03%, 0.46%, 0.47%, and 1.3%
for the 3rd, 5th, 7th and 9th harmonics, respectively. As it was expected, this accuracy is
much better than one we have for the strain profiles themselves, affected by the uncertainty
in the positions of maxima.

4. Numerical Results for Two-Frequency Mixing in Nonlinear Wave
Propagation

Using the developed numerical scheme it is possible to analyze the nonlinear propagation
of an arbitrary acoustic signal launched from the boundary x = 0. However, in order to
get an insight in the physics of the process of wave interactions in materials with hysteretic
quadratic nonlinearity we present here the results for the signals that are biharmonic at
the boundary. Moreover, we limit ourselves to the analysis of a particular case where the
signal at the boundary is a mixture of harmonic signals at frequencies w and 2w. This
particular choice is motivated by the fact that the 2w-wave is not generated by the w-wave
in materials with hysteretic quadratic nonlinearity (see Fig. 6). This is expected to provide
some simplification in the interpretation of the results. More importantly is the fact that
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Fig. 7. Nonlinear distortion of the biharmonic strain wave: s(z = 0,7) = Aj sin 27 f17 + Ag sin 27 fa7. Here
fi=1f2=2 A =1,A45 =0.2 (“simplex” profile).

in this case the analytical results describing the nonlinear hysteretic absorption of acoustic
waves can be obtained in a limiting regime and can be used both for the additional testing
of the numerical scheme and for the interpretation of the numerical results.

In the first set of the simulations we added to the sinusoidal input analyzed in Sec. 3.3
without any phase shift a sinusoidal signal at frequency 2w. The boundary condition takes
the form:

s(zx =0,7) = Z1(0) sin 27 f17 + Z2(0) sin 27 for = Aj sin 2n7 + Agsindnr . (4.1)

Here and in the following we use the notations A; o for the amplitudes Z; 2(0) of the waves
with frequencies w and 2w at the boundary. Figure 7 illustrates the nonlinear distortion of
the wave profile with increasing propagation distance and Fig. 8 presents the evolution of
the spectrum for a typical simplex wave (A2/A; = 0.2 < 0.5). Note that for the boundary
condition in Eq. (4.1) the complex wave is launched from the boundary if A3/A; > 0.5.
Figure 9 presents the evolution of the wave profile for a typical complex wave (Ay/A; =
0.7 > 0.5), while Fig. 10 shows its spectrum. In the spectrum presentations here and later we
retain only the frequencies that can be generated by the initial w and 2w waves directly by
the four-phonon processes. In general in the medium with hysteretic quadratic nonlinearity
for frequency mixing of wi and wy resulting in the excitation of ws the following multi-
phonon processes are allowed??30: w3 = +(w1) & 2m(w2) and w3 = +(ws) £ 2m(w;) with
arbitrary combination of signs and factors m = 1,2,3,.... One phonon of frequency wi o
and 2m phonons of frequency ws 1 are participating together with the resultant phonon
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Fig. 8. Generation of higher harmonics during the process of two-frequency wave propagation (Fig. 7): the
depth dependences of the spectral amplitudes Zy(x) for different frequencies nw.
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Fig. 9. Nonlinear distortion of the biharmonical strain wave: s(z = 0,7) = Aj sin 27 f1 7+ Ag sin 27 fo7. Here
fi=1,f2=2 A1 =1,A42 = 0.7 (“complex” profile).
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Fig. 10. Generation of higher harmonics during the process of two-frequency wave propagation (Fig. 9): the
depth dependences of the spectral amplitudes Zy(z) for different frequencies nw.

of frequency w3 in each 2(m + 1)-phonon process. However the efficiency of the process
diminishes with the increasing m. That is why we keep in our presentation (but, surely, not
in the calculations) only the four-phonon processes (corresponding to m = 1).

The remarkable feature observed in the spectrum evolution (Figs. 8 and 10) is the faster
initial growth of the 4w-wave in comparison with the 3w-wave. At first glance this looks
unexpectedly because the efficiency of the process (w)+2(w) = 3w (Sec. 3.3) is proportional
to A2, while the efficiency of the process of the 4w-wave generation (2w)+2(w) = 4w (where
one phonon of the 2w-wave is combined with two phonons of the w-wave) is proportional
to A1 Ao, and normally it is lower when Ay < A; (Fig. 8). However, it should be taken
into account that in the presence of the 2w-wave there is an additional process of the direct
excitation of the third harmonic: —(w)+2(2w) = 3w, where two phonons of the 2w-wave are
combined with a phonon of the w-wave. Clearly, the latter process acting in anti-phase to
the process (w) +2(w) = 3w could be responsible for the decrease of the 3w-wave amplitude
in the presence of the 2w-wave (Fig. 8) in comparison with the case of the monochromatic
input (Fig. 6). Though this interpretation is plausible, we have in any case to admit that
high relative efficiency of the forth harmonic excitation for the particular phasing between
the input waves assumed in Eq. (4.1) is amazing.

The important feature extracted from the analysis of the wave profile transformation
(Fig. 9) is the gradual transformation of the complex wave into the simplex wave with
increasing propagation distance. The local maximum disappears due to the hysteretic ab-
sorption, that near the wave extrema has a very clear “geometrical” manifestation. In fact,
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Fig. 11. The critical distance ,;; (the distance when a complex wave becomes simplex) as a function of
amplitude Ay for the boundary conditions Eq. (4.1) (“sin+sin”) and Eq. (4.2) (“cos + cos”). Here A1 =1
in both cases.

2021 (or to the case of the acoustic pulses??)

the leading part of the wave profile near the extremum is always delayed due to nonlinear
effects relative to the trailing part. An extremum itself is the intersection point of these
rising and falling (or vice versa) parts of the profile where the leading part moves near the

similar to the case of a pure sinusoidal wave

extremum in the direction of the trailing part.?"

The formal mathematics demonstrates that the nonlinear contribution to sound velocity
is always negative just before the extremum and is equal to zero just after the extremum (see,
for example Eq. (5.1) and Eq. (5.4) in Sec. 5). The continuous mutual “penetration” of these
leading and trailing parts leads to the diminishing of the strain amplitude in the extremum
(compare for example the profiles at x = 0 and = 0.5 in Fig. 9). In Fig. 11 we present
the dependence of the critical distance s, for the end of the transition from the complex
to the simplex wave on the amplitude As of the 2w-wave at the boundary. The proposed
numerical algorithm enables us to keep track of the number of extrema directly. From general
considerations it might be expected that the frequency mixing processes significantly depend
on the relative phase shift between the interacting waves. One of the best-known examples
is the dependence of the amplification of the subharmonic (w/2) in the field of the w-wave
in material with a classical elastic quadratic nonlinearity on their mutual phasing.?* For
the materials with hysteretic quadratic nonlinearity the dependence of the absorption of a
weak probe wave in the field of a strong pump wave on their relative phase was predicted
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Fig. 12. Nonlinear distortion of the biharmonical strain wave: s(z = 0,7) = Ajcos 2w f17 + Ag cos 2w foT.
Here f1 =1, fo =2,A1 =1, A3 = 0.2 (“simplex” profile).
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Here f1 =1, fo =2,A1 =1, A3 = 0.7 (“complex” profile).

theoretically.?! Following these indications we decided to analyze the case with the boundary
condition different from one in Eq. (4.1) and we introduced the shift equal to 7/4 into the
2w-wave. In fact the possible phase shifts Ay leading to qualitatively different results in wave
transformation are limited by the interval 0 < Ay < /4. So the chosen case Ay = /4 can
be considered as the opposite to Ay = 0 (Eq. (4.1)) limiting case. The boundary condition
for Ap = /4 can be equivalently presented as:

s(x =0, 7) = Ay cos 2nT + Ay cos 4nT . (4.2)

In Figs. 12 and 13 we present for a typical simplex wave the evolution of the profile and
the spectrum, respectively. The complex wave exists for the boundary condition Eq. (4.2)
if A2/A; > 0.25. In Figs. 14 and 13 we present for a typical complex wave the evolution
of the profile and the spectrum, respectively. The results in Figs. 13 and 15 confirm the
hypothesis on the strong dependence of the frequency mixing process in the materials with
hysteretic quadratic nonlinearity on the mutual phase of the w and 2w waves.

In the case Ap = 7/4 the efficiency of the 4w-wave excitation at short propagation
distances does not exceed the efficiency of the third harmonic generation.

In the case of the boundary condition Eq. (4.2) the transformation of a complex wave
into a simplex one is also observed (Fig. 14). From Fig. 11 it follows that in this regime
(marked as “cos + cos”) the simplex wave is formed (for the same ratio As/A;) at shorter
propagation distances in comparison with the regime “sin+sin” (A = 0). Qualitatively
this is due to higher nonlinear hysteretic absorption near the local extrema in the former
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Fig. 15. Generation of higher harmonics during the process of two-frequency wave propagation (Fig. 14): the
depth dependencies of the spectral amplitudes Zn(z) for different frequencies nw.

regime. In fact the hysteretic absorption in an extremum depends on the magnitude of the
differences between the strain value s, in the considered extremum and the strain s, in
the previous extremum. More precisely the “velocity” of the mutual penetration of the two
parts of the wave profile near the extremum is proportional to |se — s¢p|. Comparison of
Figs. 9 and 14 clearly demonstrates that at the boundary this factor for the first strain
minimum is larger in the regime Ay = 7/4 than in the regime Ay = 0. The larger critical
length g, in the regime “sin+sin” can be attributed to the fact that in this regime the
formation of the internal loop (characteristic to the complex process) leads to nearly twice
reduction of |s, — s¢p| magnitude in comparison with the regime “cos + cos”.

Though the obtained results concerning the higher harmonics are interesting, the higher
harmonics excited in the four-phonon processes are usually small (Figs. 8, 10, 13 and 15).
For example even in the propagation of a pure sinusoidal wave the third harmonic amplitude
is less than 10% of the fundamental (Fig. 6). These are the w-wave and the 2w-wave that
commonly dominate in the total acoustic signal (see the insets in Figs. 8, 10, 13 and 15).
Consequently, the most important is to analyze the mutual influence of these waves in the
process of frequency mixing. In Fig. 16 we present the results of this analysis in the case
Ap = 0 (“sin+sin”). The dependence of the amplitude of one wave on the amplitude of
another one is evaluated at different distances from the boundary.

The examination of the results in Fig. 16 leads to the conclusion that at short prop-
agation distances the increase in the amplitude of either w-wave (A;) or the 2w-wave
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Fig. 16. The normalized spectral amplitudes Z1/A; (a), (c) and Z2/As (b), (d) for different depths = as
functions of the amplitude A1 (A2 =1 = const.) (a), (b) and as functions of Ay (A7 =1 = const.) (c), (d),
calculated for the initial signal s(x = 0,7) = Ay sin 2w fi7 + Agsin 2w for, f1 =1, fo = 2.

(A2) usually induces additional absorption (9(Z1/A41)/0A1 < 0, 9(Z1/A1)/0As < 0,
0(Z2/A2)/0A2 < 0). Only the dependence of the 2w-wave amplitude on the amplitude
of the w-wave exhibits the regime of the induced transparency (0(Z2/A2)/0A; > 0) in
the neighborhood of A; ~ 1.5 (Fig. 16(b)). At larger propagation distances this induced
transparency regime becomes even more pronounced, and the intervals of the induced trans-
parency are also predicted for the influence of 2w-wave on the w-wave as well (Fig. 16(c),
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Fig. 17. The normalized spectral amplitudes Z1/A; (a), (c) and Z2/As (b), (d) for different depths = as
functions of the amplitude A1 (A2 =1 = const.) (a), (b) and as functions of Ay (A7 =1 = const.) (¢), (d),
calculated for the initial signal s(x = 0,7) = Ay cos2mw fi7 + Agcos 2w far, f1 = 1, fa = 2.

x > 0.2, Ay ~ 1). Moreover, the self-induced transparency is found for the 2w-wave in the
field of the w-wave at sufficiently large distances (Fig. 16(d), 0(Z2/As)/0As > 0 for z > 0.3
and Ay <0.5).

In Fig. 17 we illustrate the mutual influence of the w- and 2w-waves in the case Ay = 7/4
(“cos 4 cos”). Comparison of Figs. 16 and 17 clearly indicates the dependence of the ana-
lyzed processes on the phase between the input waves. In the regime Ap = 7/4 the increase
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of the w-wave amplitude induces additional absorption of both w- and 2w-waves at all
tracked distances (Fig. 17(a,b)). At the same time the increase of the 2w-wave amplitude
can diminish absorption of both w- and 2w-waves even at shortest propagation distances. In-
duced transparency (0(Z1/A1)/0As > 0) is predicted numerically for As < 0.5 (Fig. 17(c)).
Self-induced transparency for the 2w-wave (9(Z3/A2)/0As > 0) in the presence of the
w-wave is expected in the interval of Ay values that depends on the propagation distance
(Fig. 17(d)).

The numerically obtained predictions concerning the existence of the induced trans-
parency effects even at the shortest propagation distances indicate that these effects (at
least near the boundary) are not due to the wave spectrum transformation but rather due
to the peculiar features of local nonlinear hysteretic absorption in the process of two fre-
quency mixing. This gave us an idea to analyze the local hysteretic absorption of both w-
and 2w-oscillations at the boundary z = 0. Fortunately in the case Ay = /4 the analytical
description of the local hysteretic absorption is possible in addition to numerical (providing
additional insight in the physics of the phenomena and an additional opportunity to test
our numerical algorithm).

5. Analytical and Numerical Analysis of Local Nonlinear Hysteretic
Absorption

In order to get better physical insight in the obtained results of numerical simulations of the
nonlinear wave propagation (discussed in Sec. 4) we present below some analytical results
related to local hysteretic absorption in the considered process of w and 2w interaction.
Surely the harmonics that are generated in the nonlinear wave propagation of the primary
waves at w and 2w do also contribute to the process of nonlinear hysteretic absorption,
so that the applicability of the below presented analytical results is limited to the vicinity
of the boundary x = 0 (where the higher harmonics and their inverse influence on w and
2w are negligible). However, comparison with the analytical results definitely indicates that
the numerically predicted effects of the induced transparency and induced absorption near
the boundary are peculiar features of the hysteretic absorption (and not those of frequency
mixing and energy redistribution among w, 2w and higher harmonics).

Compact analytical solutions can be obtained for the boundary signal in Eq. (4.2) (A¢ =
m/4). In the following we use the notation § = 277 in the arguments of the signals in
Egs. (4.1) and (4.2). A simple analysis of Eq. (4.2) indicates that the strain is “simplex” if
the nondimensional parameter p = A;/4A, satisfies the inequality p > 1. In other words,
the amplitude As of the “high-frequency” component at 2w should be sufficiently small in
comparison with the amplitude of the “low-frequency” component at w (Ay < A;/4). In
the simplex regime the process in Eq. (4.2) has the single maximum (s = A; + Ay at
0 = 2mn, n = 0,£1,42,...) and the single minimum (s% = —A; + A at 0 = (2n + 1),
n =0,£1,42,...) over a wave period ((2n — )7 <0 < 2n+ 1)m, n = 0,+1,£2,...). In
the following we consider for definiteness the period —7 < 6 < 7.

The process in Eq. (4.2) is “complex” in the parameter region p < 1. In the complex
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Fig. 18. The normalized hysteretic stress (b) as a function of strain (a) for the process s = A1 cos 0+ Az cos 26.

The intervals —m < 0 < Giﬂli, 9( ) <6<0,0<0< €(+) Hr(rj;r)l < 0 < 7 are marked by different line styles
(1, 2, 3, 4, respectively).

process the amplitude and the position of the absolute maximum coincide with those in
the simplex process (see Fig. 18(a)), i.e. s% = s5(0 = 0) = A; + Ay = Ay(1 +4p). In
contrast, the absolute minimum of the simplex process transforms into the local maximum
of the complex process 5% = s(0 = ) = —A; + Ay = A(1 — 4p). Additionally two equal
minima appear over a period Spin = s(6 = Hr(mzl = +arccos(—p)) = —Aa(1 + 2p?) < slo¢ |
As a result in the considered complex process we have two maximas and two minimas over
a period (Fig. 18(a)).

Applying the rules formulated in Sec. 2 it is straightforward to find the form of the
nonlinear contribution to elastic modulus do/9ds for the considered process in Eq. (4.2).

Applying Egs. (2.9) and (2.10) in the simplex regime (p > 1) we get:

Ooy

g — gabs -1 <0<0, -
85 s ()

abs _ g 0<f<m.

Integration of Eq. (5.1) provides the description of the nonlinear hysteretic contribution to
stress:

o(0 = —m) = folo(s —si)?/2,  —m<0<0,
oH = (5.2)
(0 =0)+ folo(siia — 9)2/2, 0<f<m
The relation between the integration constants og(6 = —n) and og (0 = 0) is provided

abs
max

either by the continuity of the stress at § = 0 (where s = s%% ) or by the periodicity of the
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stress o7 (0 = —7) = o (0 = 7) (note that s(f = —7) = 5(0 = 1) = 592 ):

or(0=0)=0op(0 = —r) — foAo (s, — s2)?/2. (5.3)

The solution for the hysteretic nonlinear stress in (5.2)—(5.3) is sufficient for the evaluation
of the hysteretic absorption because the undetermined component o (6 = —7) of the stress
is constant over a period and, therefore, does not contribute to losses.

The generalization of the results in (5.1)—(5.3) for the complex regime (p < 1) is also
straightforward

siggx—s, —7T<9<9r(r;r)l,
oy S — Smin, 95;1)1 <#0<0,
—— = —folAo X
s sabs s, O<9<0r(;§r)l,
[ — Smin, 95;1)1<9<7r.
—(slos = 9)% —m <0 <o),
_ JoAo o —(simax = Smin)? + (5 — Smin)?, el(qr;x)l <0<0,
OH = OHlg=—r 2 _ (loc 2 abs abs __ o\2 << 0(+)
(Smax Smln) + (Smax Smm) (Smax S) ) 0 — Y = Ymin>’
. —(s195x — Smin)® + (5 = Smin)?, 91(1121 <f<m
(5.4)

In Fig. 18(b) we present the stress/strain hysteretic curve with a minor loop predicted in
Eq. (5.4) for the complex process (p < 1) of w and 2w mixing. Using the obtained form
of the nonlinear stress relationship we evaluate directly the energy density loss (E) over a
period. Furthermore, the overall hysteretic absorption is readily separated into the losses
over a period at frequency w (F;) and at 2w (E3):

+m
o 7{ o11(3)ds = / ouls(0)] - (—Aysind — 245 sin20)d0 = Ey + 2B (5.5)

—Tr

Here ¢ denotes the integration over a period of strain variation,

—+m
Ey= -4 / or[A1 cosf + Agcos 20| - sin0do ,

+7
Ey = —Ay / or[A1 cosf + Ag cos 20| - sin 20d6 .

The factor “2” on the right-hand-side of Eq. (5.5) takes into account that two periods of
the 2w wave contribute to the hysteretic loss in a single period of total strain variation. We
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also introduce the notations Wp and Ws for the energy densities at w and 2w averaged over
a wave period

1 T 1
Wy = %pocg/ (Aq cosf)?df = §poc%A%,

—T

™

Wy = i,oocg/ (A cos 20)%dH = 1,Ooc%Az,
2 o 2

and define the acoustic decrements (i.e. the inverse quality factors) characterizing the non-

linear hysteretic absorption at frequencies w and 2w by D12 = Eq2/2W 5.

The evaluation of the decrements is carried out analytically. The final result is convenient
to be presented in normalized variables Di o = D172/D0, A = A172/50, where sY is the
characteristic strain amplitude and D° = 4f,A0s®/(3pgc3) is the characteristic decrement,
which corresponds to hysteretic losses in a simplex sinusoidal process with strain amplitude
s0. For the description of the nonlinear hysteretic losses at frequency w we derived

1
Ay <1 — ﬁ) , p>1 (simplex),
Dy = b (5.6)

1
Ay <1 +2p% + 3p4> , p<1 (complex).

The dependencies of the decrement D7 on the amplitudes A; and As of the input waves are
illustrated in Figs. 19(a) and (b). The transition from the simplex to the complex regime (or
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vice versa) clearly influences the decrement of the 2w wave. It manifests itself in the kinks in
the dependence Dy = Dy(A;) at A; =4 (Fig. 19(a)) and in the dependence Dy = Dy(As)
at A2 = 0.25 (Fig. 19(b)). However, the influence of the simplex-complex transition on the
decrement of the w wave looks much less pronounced.

In accordance with Eq. (5.6) when the component at 2w is negligibly small (p — o0)
the decrement at w is proportional to its amplitude A;. We recover a classical feature
(D1 o< Ay) of the hysteretic amplitude-dependent absorption of monochromatic wave.!~#20
When the amplitude As increases then Eq. (5.6) predicts that in the simplex regime (p > 1)
the injection of 2w causes the decrease of the decrement at w. Qualitatively, for the “low-

" signal at w, the signal at 2w can be treated as a “high-frequency” signal and

frequency’
called the dither.3? 34 Thus we can say that in the simplex regime the injection of a dither
induces the transparency for the wave at frequency w. This effect is predicted here for the
first time. In Ref. 35 it has been demonstrated that in the medium with the hysteretic
quadratic nonlinearity a weak counter-propagating wave induces transparency for a strong
wave of the same frequency. The predicted effect of the absorption decrease was proportional
to the square of the weak wave amplitude (Eq. (29) in Ref. 35) similar to the result in
Eq. (5.6) where D1 (simplex) = A;—(16/5)(A3/A;). However, the results of Ref. 35 cannot be
directly applied for the waves propagating in the same direction and of different frequencies.
The theory of the dithers in the materials with hysteretic quadratic nonlinearity in the
case of simplex processes might be developed by extending the formalism of the successive
approximations®' proposed earlier for the analysis of the absorption induced by a strong
pump wave for the weak probe wave propagating in the same direction. It could be an
interesting perspective for the future research in particular due the expected from Ref. 31
the possible dependence of the phenomenon on the relative phase of the low-frequency and
the high-frequency signals.

In line with Eq. (5.6) the transition to complex regime with decreasing parameter p
(increasing A for a fixed A;) introduces additional losses at frequency w. These losses with
increasing A, first compensate the transparency induced by the dither properties of the
2w-wave and finally lead to induced hysteretic absorption proportional to A,. The latter
regime in the limit As > A; was predicted earlier in Ref. 31. Importantly the analytical
result in (5.6) describes a peculiar transition between the limiting cases (A2 < A; and
As > Aj) both evaluated earlier. In this transition the competition of the properties of
2w-wave as a dither and its ability to create internal loop in the hysteretic stress/strain

relationship leads to the existence of the critical amplitude AS!, which provides minimum

of losses at frequency w (AS = A1/(44/5/31/+/1+3/5 — 1) = A;/2.7. The dependence of
Dy on A, for a fixed A; is presented in Fig. 19(b).

In contrast to the nonmonotonous behavior of D;(Az), decrement D; as a function of A;
continuously rises with increasing A (0D1/0A; > 0, see Fig. 19(a)). The transition between
the regime A; < Ay (where the absorption of w induced by 2w dominates, D1 o Ag3!)
and the regime A; > A, (dominated by self-absorption of w, Dy oc Ay 120)
The transition from complex to simplex regime (disappearance of the internal loop when

is monotonous.

A1 = 4A5 ) has just a minor influence on this monotonic behavior.
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In a similar way for the nonlinear hysteretic losses at frequency 2w we derived

§A1, p>1 (simplex),

D, (5.7)

Ao (1 +7p? —pt — ng) , p<1l (complex).

In accordance with (5.7) the absorption of 2w in the simplex regime (p > 1, As < A1/4) is
induced by the higher amplitude wave at frequency w (induced absorption of a weak signal
wave is proportional to the amplitude of a pump wave Dy x A; as discussed in Ref. 31). Im-
portantly Eq. (5.7) predicts the complete absence of the hysteretic self-absorption of the 2w
wave in the absence of the internal (minor) loop (i.e. 9D2/0As = 0 in the simplex process).
Amazing prediction contained in Eq. (5.7) is that the transition to complex regime with
increasing As (for a fixed Ap) leads to the diminishing of losses at frequency 2w. It means
that the appearance of self-absorption (which leads to increase of Ds) is initially overcom-
pensated by the fall in the absorption of 2w induced by the presence of the pump wave at
frequency w. Thus the formation of the internal loop with increasing As is accompanied
by the effect of self-induced transparency (0D2/0As < 0 for Ay > A;/4, see Fig. 19(b)).
Surely with further increase of Ao the self-absorption of the 2w wave becomes more and
more important, and in the limiting regime p < 1, Ay > Ay Eq. (5.7) predicts the dom-
inance of the hysteretic self-absorption (D2 o< As in accordance with the well-established

results'2?). This peculiar dependence of Do on Aj is illustrated in Fig. 19(b). The minimum

of the losses at 2w takes place at critical amplitude A§? = A1/(44/2/v/3 —1) ~ A;/1.6,

which is different from A‘irl. The transition between the regime of self-absorption (Dy o A
when A; < Ag) to the regime of the pump-induced absorption (Dg < A; when A; > Aj)
with increasing amplitude of the wave at frequency w is monotonous 0D3/0A; > 0 (see
Fig. 19(a)).

From the analysis presented above we conclude that (for the input signal in Eq. (4.2)) the
decrements D; o depend monotonously on the amplitude of the low-frequency (w) wave and
nonmonotonously on the amplitude of the high-frequency (2w, dither) wave. The peculiar
effects of the induced transparency and absorption are related to the properties of the 2w-
wave as a dither and the influence of the transition from simplex to complex regime on the
induced absorption. All the effects predicted above for the local hysteretic absorption at the
boundary z = 0 are reflected in the evaluated numerically transformations accompanying
nonlinear wave propagation (see Fig. 17). In particular the transparency induced by a
small-amplitude 2w-wave for the propagation of the w-wave (Fig. 17(c)) is due to the dither
properties of the higher frequency wave for this particular phasing (A¢ = 7/4) (Fig. 19(b)).
The self-induced transparency of the 2w-wave (Fig. 17 (d)) is initiated by the formation of
the minor loop and the transition from the simplex to complex process with increasing Ao
(Fig. 19(b)).

In Fig. 20 the results of the numerical calculation of the local hysteretic losses in the case
A¢p =0 (Eq. (4.1), “sin + sin”) are presented. The most of the kinks in the dependences of
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the decrements D¢ and Ds on the amplitudes of the input waves in Fig. 20 can be related to
the transition between the simplex and the complex regimes of the boundary oscillations.
There is a clear correspondence between these predictions and the phenomena, of the induced
absorption and transparency at short propagation distances shown in Fig. 16. In particular,
the regime of the diminishing absorption of the 2w-wave with the increasing amplitude of the
w-wave can be clearly identified for the same interval 1.5A49 < A; < 245 both in Fig. 16(b)
and in Fig. 20(a). The maximum amplitude A; (the upper boundary A; ~ 2A4,) for this
regime of the induced transparency is related to the transition from the complex to the
simplex regime in the acoustic emission from the boundary with the increasing amplitude
of the w-wave. Interestingly the character of the dither effect (describing the influence of
the lower in amplitude higher frequency wave on the higher in amplitude lower frequency
wave) has changed the sign in the case A¢ = 0 in comparison with the previous limiting case
A¢ = 7 /4. Injection of a weak 2w-wave causes additional absorption (induced absorption) of
the w-wave (0D1/0Ay > 0 for Ay < Aj). The role of the two signals phasing on the process
of the nonlinear hysteretic absorption requires additional more detailed investigation in the
future.

6. Qualitative Discussion of the Effects Related to Nonlinear Hysteretic
Absorption

In the previous section it was demonstrated that the major contribution to the mutual
influence of the w- and 2w-waves at short propagation distances is provided by the process
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of the nonlinear hysteretic absorption. Unfortunately, deeper interpretation of the obtained
results is very difficult at least at the current level of our knowledge. Even the results for the
local hysteretic absorption presented in Figs. 19 and 20 look at first glance counterintuitive.
For example, with the analytical description of the stress/strain relationship Egs. (5.2)—(5.4)
(simply by examining the contributions to the integral in Eq. (5.5)) the following can be
easily understood. Due to the formation of the internal loop the amplification of the 2w-wave
in the simplex wave (that takes place near the absolute minima in # = (2n+ 1)7 in the case
A¢ = m/4) changes in the complex regime for its absorption in the same neighborhood of
0 = (2n+1)w. This is related to the change in the character of the extremum in § = (2n+1)x
from the minimum in the simplex regime to the local maximum in the complex regime. So
the formation of the internal loop leads to the absorption increase for the 2w-wave in the
time intervals where the system moves along the internal loop. This conclusion is also in
accordance with the expectation that in the asymptotic case As > A; this internal loop
should provide half of the self-absorption of the 2w-wave. However, this prediction makes the
result in Fig. 19(b), where the formation of the internal loop for Ay > 0.25A; leads to the
decrease of the decrement D5, at first glance counterintuitive. To explain the dependence
Dy = Dy(As) in Fig. 19(b) (obtained both numerically and analytically) we have to admit
that in reality the formation of the internal loop has a pronounced influence on the processes
taking place along the major loop. And, in fact, the transparency induced for the 2w-wave
along the major loop overcompensates the absorption induced along the minor loop. Finally
this conclusion will stop looking counterintuitive if we remind that there is a memory in
the considered system in particular of the latest extremum. Consequently, the formation of
the minor loop by modifying the amplitudes of the extrema should have influence not only
on the local processes (along the internal loop), but on the processes along the major loop
as well. This influence results in the modification of the hysteretic absorption process over
the complete wave period.

There is an additional argument providing indication that in the neighborhood of the
transition from the simplex to the complex regime these are the processes along the main
hysteresis loop that play the major role in the case A¢ = w/4 (“cos 4 cos”). The magnitude
of the contribution to the absorption (amplification) coming from the internal loop is small
due to the fact that the minor loop in this regime is located near the extrema of both w and
2w strain waves. Because of this the differential (ds) is small in Eq. (5.5) along the internal
loop. So the dominant role of the major loop is expected.

Let us apply the qualitative arguments listed above to the analysis of the regime A¢ = 0
(“sin+sin”, Eq. (4.1)). By the examination of Fig. 20(b) we conclude that the variation in
the absorption of the waves caused by the formation of the internal loop are again in anti-
phase. Indeed near the transition (As = 0.5A4;) with the increasing 2w-wave amplitude the
rate of the D variation decreases while the rate of the D4 variation rises. However, the sign
of the absorption variation does not change (the regime of the induced transparency is not
predicted in Fig. 20(b)). We may conclude that in this regime the leading role in the sound
absorption even after the formation of the minor loop plays the interval of the in-phase
variation of the strain in w- and 2w-waves ((2n — 1/2)7 < 6 < (2n + 1/2)7). This causes
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in-phase variation in the absorption of w- and 2w-waves even after the transition from
simplex to complex regime (with increasing As). This conforms to our intuition because
for the “sin+sin” regime near the transition we have in the interval (2n — 1/2)7 < 6 <
(2n + 1/2)7 both the absolute maximum and the absolute minimum of the total strain
that are influenced but do not change their character when the minor loop is formed. We
remind that these are the extrema of the wave profile where (in accordance with the time-
domain analysis of the wave profile evolution) the hysteretic absorption is concentrated.
So we arrive to the conclusion that the temporal separation of the internal loop from the
absolute extrema (compare the regimes A¢ = 0 and A¢ = 7/4) reduces the qualitative
influence of its formation on the losses both at w and 2w frequencies (compare Figs. 20(b)
and 19(b)).

The kinks in the variation of the losses in the regime A¢ = 0 due to the transition
between the complex and the simplex regimes are also observed when the amplitude of the
w-wave is varied near A1 = 245 (Fig. 20(a)). The changes in the rate of D1 and D5 variation
are again in anti-phase. We underline here that the anti-phase variation in the rate of the
absorption at w and 2w frequencies due to the transition between the simplex and complex
regimes is the general feature of the investigated phenomenon related to the fact that the
minor loop appears always in the time-interval of the anti-phase variation of strain in w- and
2w-waves (that is where in one wave it diminishes while in the other wave it increases, or
vice versa). It can be seen (Fig. 20(a)) that the regime of the induced transparency for the
2w-wave can be induced by the increasing amplitude of the w-wave just below the transition
from the complex to the simplex regime (1.54; < A; < 2A,). Clearly in this interval of
the w-wave amplitudes the diminishing of the 2w-wave absorption due to the shrinkage of
the minor loop with increasing A; overcomes increasing absorption induced by the increase
of the major loop. The regime of the induced transparency terminates at A; = 245 when
with increasing A; the internal loop disappears. Consequently, the conclusions drawn just
in the previous paragraph are not completely general. Even in the limiting case A¢ = 0 the
rate of the absorption variation can change the sign due the transition between the simplex
and the complex regimes, although the influence of the transition on the absorption in the
system is less pronounced in the comparison with the regime A¢ = /4.

7. Conclusions

The numerical code is developed for the analysis of plane acoustic wave propagation in the
nonlinear mesoscopic materials. The results of both numerical and analytical investigation
of the wave frequency mixing process in materials with hysteretic quadratic nonlinearity
revealed multiple complex phenomena due to hysteresis and memory in the considered
materials. Most of the results were obtained for the case of the w-wave the 2w-wave mixing.

The transformation of the wave profile and the wave spectrum in nonlinear wave propa-
gation are investigated numerically and interpreted. It is demonstrated that for some phase
shifts between the w- and 2w-input waves the efficiency of the forth harmonic excitation
can exceed the efficiency of the third harmonic excitation. The transformation of a complex
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wave into a simplex wave in nonlinear propagation is demonstrated and the dependence of
the process on the relative phase of the w- and 2w-waves is explained by the influence of
the relative phase on the efficiency of the nonlinear hysteretic absorption at local extrema.

It is established that at short propagation distances the interaction of the w- and 2w-
waves is mainly through the mechanism of the nonlinear hysteretic absorption and is not
strongly influenced by the process of new spectral components generation and their inverse
influence on the input waves. Peculiar regimes of the induced transparency (where the
increasing amplitude of the w(2w)-wave leads to fall in the absorption of 2w(w)-wave) are
predicted both numerically and analytically, and qualitatively interpreted. The regime of the
self-induced transparency (where in the presence of the w-wave the increasing amplitude
of the 2w-wave induces fall in the absorption of the 2w-wave) is also demonstrated and
explained qualitatively. The role of the transition from the emission of the simplex wave to
the emission of the complex wave (or vice versa) in the process of the induced absorption
and transparency is identified.

The obtained results are expected to find applications in the nondestructive evaluation
of the mesoscopic materials and in seismology.

Acknowledgments

One of us (V. A.) gratefully acknowledges the Fellowship from the University of Maine
(France, 2001-2002) and the Grant from the Foundation for Scientific Research (Belgium,
2002-2003). We also thank Prof. Koen Van Den Abeele for numerous friendly discussions.

References

1. V. E. Nazarov, L. A. Ostrovsky, I. A. Soustova and A. M. Sutin, Sov. Phys. Acoust. 34 (1988)
284.

2. V. E. Nazarov, L. A. Ostrovsky, I. A. Soustova and A. M. Sutin, Phys. Farth Planet. Inter. 50

(1988) 65.

V. E. Nazarov, Sov. Phys. Acoust. 37 (1991) 75.

V. E. Nazarov, J. Acoust. Soc. Am. 107 (2000) 1915.

V. E. Nazarov and S. V. Zimenkov, Acoust. Lett. 16 (1993) 218.

P. A. Johnson, B. Zinszner and P. N. J. Rasolofosaon, J. Geophys. Res. 101 (1996) 11553.

B. Zinszner, P. A. Johnson and P. N. J. Rasolofosaon, J. Geophys. Res. 102 (1997) 8105.

V. E. Nazarov, A. V. Radostin and I. A. Soustova, Sov. Phys. Acoust. 48 (2002) 85.

9. J. K. Na and M. A. Breazeale, J. Acoust. Soc. Am. 95 (1994) 3213.

PN

10. R. A. Guyer and P. A. Johnson, Phys. Today 52 (1999) 30.

11. V. Yu. Zaitsev and P. Sas, Acustica-Acta Acustica 86 (2000) 429.

12. V. Yu. Zaitsev, V. E. Nazarov and I. Yu. Belyaeva, Acoust. Phys. 47 (2001) 178.
13. V. Zaitsev, V. Gusev and B. Castagnede, Phys. Rev. Lett. 89 (2002) 105502.

14. D. J. Holcomb, J. Geophys. Res. 86 (1981) 6235.

15. R. A. Guyer, K. R. McCall and G. N. Boitnott, Phys. Rev. Lett. 74 (1995) 3491.
16. F. Preisach, Z. Phys. 94 (1935) 277.

17. 1. D. Mayergoyz, J. Appl. Phys. 57 (1985) 3803.
18. I. D. Mayergoyz, Phys. Rev. Lett. 56 (1986) 1518.



354 V. Aleshin, V. Gusev & V. Yu. Zaitsev

19.

20.
21.
22.
23.

24.

25.
26.
27.

28.
29.
30.
31.
32.
33.

34
35

M. A. Krasnosel'skii and A. V. Pokrovskii, Systems with Hysteresis (Nauka, Moscow, 1983;
Springer, Berlin, 1989).

V. Gusev, C. Glorieux, W. Lauriks and J. Thoen, Phys. Lett. A32 (1997) 77.

V. Gusev, W. Lauriks and J. Thoen, J. Acoust. Soc. Am. 103 (1998) 3216.

V. Gusev, J. Acoust. Soc. Am. 107 (2000) 3047.

K. Van Den Abeele, P. A. Johnson, R. A. Guyer and K. R. McCall, J. Acoust. Soc. Am. 101
(1997) 1885.

O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Consultants
Bureau, New York, 1976).

R. Kurant and K. Friedrichs, Supersonic Flow and Shock Waves (Interscience, New York, 1948).
V. E. Gusev and A. A. Karabutov, Laser Optoacoustics, Chap. 6 (AIP, New York, 1993).

M. Scalerandi, V. Agostini, P. P. Delsanto, K. Van Den Abeele and P. A. Johnson, J. Acoust.
Soc. Am. 113 (2003) 3049-3059.

M. Scalerandi, P. P. Delsanto and P. A. Johnson, J. Phys. D36 (2003) 288-293.

V. Gusev, J. Acoust. Soc. Am. 111 (2002) 80.

V. Gusev, Ultrasonics 40 (2002) 697.

V. Gusev, Phys. Lett. A271 (2000) 100.

D. P. Atherton, Nonlinear Control Engineering (Van Nastrad, London, 1975).

A. Gelb and W. E. Vander Velde, Multiple-Input Describing Functions and Nonlinear System
Design (McGraw-Hill, New York, 1968).

. J. K. Hale, Oscillations in Nonlinear Systems (McGraw-Hill, New York, 1963).

. V. Gusev, H. Bailliet, P. Lotton and M. Bruneau, Wave Motion 29 (1999) 211.



