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Effect of high-compliant porosity on variations
of P- and S-wave velocities in dry and saturated rocks:
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An effective medium model recently developed by the present authors is applied for interpretation of known experimental data on
pressure dependencies of elastic wave velocities in dry and saturated rocks in order to elucidate the effect of the highly compliant fraction
of the porosity. Our approach has allowed the determination of essential features of soft defects in terms of their shear and normal
compliances. For dry defects, we found that the ratio of the normal to shear compliance may be as high as 5-7, in contrast to the range 0.8—
2.2 expected for such widely used defect models as Hertz-Mindlin contacts or elliptical cracks. This high normal compliance of the real
defects results in strong decrease of Poisson’s ratio of the rock down to negative values. In the paper we consider an example of dry
sandstone exhibiting negative Poisson’s ratio. For saturated samples, we found that the normal compliance of the defects becomes smaller
than the shear one (typically 1.5-3 times). From the point of view of the role of “global” (in the sense of Biot) and local (squirt) fluid flows,
the performed examination indicates strong domination of the squirt mechanism including the cases, for which a third, unidentified

dispersion mechanism was earlier supposed.

1. Introduction

Ample understanding of the relation between the rock
microstructure and characteristics of seismic waves is one
of key points for both general seismic wave modeling and
interpretation in exploration seismology. A vast amount of
pertinent publications relate to modeling of the wave disper-
sion in a wide sense, that is the velocity dependence on the
frequency, external pressure, fluid saturation, microstructural
features of rocks, first of all effect of pores, cracks and inter-
grain contacts (e.g. [ 1] and refs. herein). The intrinsic comp-
liance of dry defects and their fluid saturation are crucial
factors determining the elastic wave dispersion. In modeling
the role of saturation one main concept originates from Biot’s
models accounting for the large-scale motion of the satura-
ting fluid relative to the solid phase [2, 3]. Another important
concept considers the small-scale fluid flows at grain con-
tacts or inside cracks, that is the “squirt flow” concept [4—
8]. Comparison with experiments indicates that in high-po-
rosity materials (like artificial packings of glass beads) the
Biot mechanism is rather essential [1]. In contrast, the data
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on elastic wave velocities in real rocks often indicate that
the squirt mechanism dominates, although for some cases
the observed dispersion apparently could be satisfactorily
described neither by the global nor by the squirt flow me-
chanisms [9].

Below we shall apply a recently proposed effective me-
dium model [10] to interpretation of experimental data ob-
tained by different authors for pressure dependencies of P-
and S-wave velocities in rocks. We shall compare and elu-
cidate the role of the high-compliant porosity for both dry
and saturated samples. The goal of the study is to determine
properties of the high-compliance (crack-like) fraction poro-
sity in terms of the normal- and shear- compliance of the
crack-like defects. The approach [10] may be characterized
as semi-phenomenological, since, at the microstructural
level, the defect parameters are introduced phenomenolo-
gically, and then the resultant macroscopic properties of
the medium are derived by consistent micromechanical
analysis. An analogous energy-balance approach was used,
for example, in the models of crack-containing solids [11—
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13]. However, in this modeling the authors used concrete
models of defects, in particular, the model of elliptical
cracks, whereas the form of real cracks is often rather far
from elliptical [14]. For the present consideration it is impor-
tant that particular fracture models normally imply a rather
limited variability of the ratio of the normal to shear comp-
liance of defects. For example, for dry elliptical cracks this
ratio is (1+7v)(2—7v) ~ 2 for most solids, where Y is Pois-
son’s ratio for the host rock [10]. Therefore, in the whole
physically allowable range of Poisson’s ratio 0 <y <0.5
for the solid matrix, the ratio of the normal to shear comp-
liances of defects remains close to two for dry crack-like
defects. Certainly, presence of a saturating fluid reduces
this ratio, since the fluid decreases the crack compressibility.
From this point of view, in the model to be used below the
phenomenological introduction of the compliance parame-
ters of the defects allows us to avoid the initial limitations
on the normal-to-shear compliance ratio. Then by the com-
parison with experimental data we determine the ratio of
the compliances for real defects. It will be shown that the
determined ratios may significantly differ from the predic-
tions based on conventional models such as elliptical cracks
or Hertz-Mindlin contacts [ 15]. Note that a similar approach
based on effective compliance (or stiffness) coefficients was
used earlier for characterization of contacts in granular solids
[16]. To this end, the known model by Digby [17] was re-
formulated in [16] in terms of phenomenological (non-pre-
determined) parameters of normal and shear stiffness of the
contacts. For layered inhomogeneous rocks and solids con-
taining planar compliant discontinuity-like fractures similar
parameters of compliance were used in [18-21] for consi-
deration of the induced anisotropy of the material or for
determining the parameters of compliance of individual
discontinuities from experimental data [22]. In this context,
model [10] combines the description of the defects in terms
of'the effective compliance parameters with the energy app-
roach and statistical averaging over arbitrary orientations
of the defects like in the aforementioned models of crack-
containing rocks.

As an interesting by-pass product of the performed exa-
mination, we have found an instructive example of a dry
rock (sandstone) exhibiting pronounced negative Poisson’s
ratio at lower confining pressures. Note that for essentially
anisotropic materials the possibility of negative effective
Poisson’s ratio is well known [23]. In paper [24] it is pointed
out that presence of cracks with zero tangential compliance
may result in negative Poisson’s ratio of the crack-containing
material. Below an interpretation will be given based on
model [10] how negative Poisson’s ratio may be observed
in materials containing isotropically-oriented cracks with
non-zero tangential and normal compliances.

In the context of the effect of fluid saturation, the per-
formed examination of the experimental data indicates
strong domination of the squirt (local-flow) mechanism in

the pressure-dependent part of the elastic-wave velocities.
Moreover, it will be shown that this conclusion also relates
to rocks, for which an additional, non-Biot and non-squirt
dispersion mechanism was earlier [9] supposed.

2. Basic equations

In this section we briefly recall the main features of the
effective medium model [10] describing the elasticity and
wave dissipation in microheterogeneous solids (below the
model will be used only in the elastic part). In the model,
the material (rock) is considered as a solid matrix containing
defects-inclusions (grains, cracks, etc.) that are isotropically-
oriented and small compared to the length of elastic waves,
the compliance of the defects being much higher compared
to the surrounding defect-free material. The characteristic
diameter of the defects and their separation are supposed
to be much smaller than the elastic wave length. It is also
assumed that the concentration of the defects is small, so
that their interaction can be neglected. In principle, the
interaction effect could be additionally introduced in the
model using, for example, a kind of “self-consistent appro-
ximation” similar to that used in [13]. However, the main
purpose of model [10] was not the investigation of its ulti-
mate possibilities to describe materials with high defect con-
centrations, but instructive elucidation of differences in the
influence of defects with different ratios of normal-to-shear
compliances on elastic moduli (and dissipation) of elastic
waves of different types. It will be shown below that, even
if neglecting the interaction of the defects, model [10] des-
cribes quite satisfactorily the defect-induced reduction in
the elastic wave velocities by 20-30 % compared to their
ultimate (“matrix’’) values corresponding to maximum con-
fining pressures at which the crack-like defects in the samp-
les are practically closed.

In order to quantitatively characterize compliance of
planar defects in response to normal stress 6, and to shear
stress o, in the in-plane direction, small parameters ¢ << 1,
ce[0,1] and &< 1, £€[0,1] were introduced in model
[10]. These parameters relate Young’s modulus £ and shear
modulus G for the matrix material with the effective moduli
E4 and Gy of the defects:

E,=cE, G,=EG. (1)

Parameters ¢ and & thus are close to the nondimen-
sional weaknesses used in [20, 21]. The orientation of the
defects with different compliances is characterized by a
distribution function v(y, @, ¢, &) that depends on both the
orientation angles W, @ of the defect normal vector and the
non-dimensional elastic parameters G, & For the isotropic
orientation, the angular part of the distribution is v(y, @) =
= 1/(4m). Summation over all orientations and compliances
gives the total volume content of the planar defects in the
unit volume of the material
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which is much smaller than unity, according to the assump-
tion that the characteristic distance between the defects is
much smaller than their size.

Considering the amounts of the elastic energy stored in
the matrix material and at the compliant defects and perfor-
ming statistical averaging, we obtained the following expres-
sions for the bulk modulus K, the Young modulus E,
the shear modulus G, modulus M for the longitudinal
(compressional) wave and Poisson’s ratio Y. in the micro-
heterogeneous material [10]:
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Here notations E, GN, and M relate to the moduli for the host
material and £, G, and M are the corresponding non-
dimensional moduli for the microheterogeneous medium.
Parameters N, and N, in expressions (2)—(6) in the quasi-
static limit (neglecting the defect relaxation) have the follow-
ing meaning:

Ny = [vsds, N, = [v©gd, @)

where partial distributions over parameters ¢, & are intro-
duced:
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Below parameters N, and N, are called the effective nor-
mal and shear densities of the defects, respectively. It is
clear from equations (7), that these parameters are determi-
ned jointly by the compliance of the defects and their con-
centration. In the case of identical defects with fixed values

of ¢ and &, the distributions have the form of delta-func-
tions, so that

Ny =v /g, Ny=v./§

and effective densities N, and N, are proportional to the
defect volume content divided by the compliance para-
meters.

Note that expressions (2)6) in the case of small concen-
tration of the defects are similar to the equations derived in
[13] using the “self-consistent” approximation, however,
in [13] the contributions of the normal and shear complian-
ces of the cracks were not explicitly singled out.

In the next section, Egs. (2)—(6) will be used for deter-
mining the ratios of the normal-to-shear compliances of real
defects by examination of known experimental data on pres-
sure-dependencies of elastic waves.

3. Comparison between the model and experimental
data

In this section, we use an instructive set of experimental
data on elastic P- and S-wave velocities versus confining
pressure, which were discussed in [8, 9] for sandstones ty-
pical of oil reservoirs. In papers [8, 9] applicability of the
squirt mechanism to interpretation of the observed depen-
dencies for elastic P- and S-waves was discussed in details.
The purpose of the below examination is to evaluate the
above introduced normal and shear compliance parameters
N;, N, and to determine the average ratio N,/N, for the
defects in the rock samples. According to equations (2)—
(6), for this purpose it is necessary to know experimentally
measured velocities (or elastic moduli) for two different
types of waves in the rock with the defects. As the reference
values for the matrix rock, following [9], we shall take the
ultimate velocities measured at the highest hydrostatic pres-
sures (50—-100 MPa). Note that at such pressure, the “matrix”
elasticity may still be affected by weakly compliant spheroi-
dal and near-cylinder pores (equant porosity), whose contri-
bution is dominant in the overall porosity (about 9—12 %)
of the samples [8, 9]. It was noted in [8] that, in the consi-
dered pressure-range, the variation of the equant porosity
was yet very small, so that the observed pronounced varia-
tions of the velocities were predominantly due to the effect
of high-compliance planar fractures. The negligible varia-
tion in the total porosity allowed us to neglect the variation
in the material density attributing the variation in the velo-
cities only to the change in the elastic moduli.

For comparison of the observed and predicted velocity
variations, it is convenient to present the data on the velocity
pressure dependencies in the form of a plot of the relative
variations AV /Vy inthe S-wave velocity against the varia-
tions AV} /Vp inthe velocity of the P-wave. The variations
AVg and AV} are counted from the ultimate high-pressure
(“matrix”) values. Figure 1 presents a set of such theore-
tically modeled dependencies plotted for different ratios
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Fig. 1. Example of a plot demonstrating sensitivity of the complementary
velocity variations to the defect properties. Ratio N;/N, ranges from
0.1 to 1 (step 0.1) and from 1 to 5 (step 1). Dashed lines are for the
ultimate cases N;/N, — 0 and N;/N, — oo

N,/N, using Egs. (4) and (5). The plot instructively de-
monstrates the sensitivity of the defect-induced variations
in the velocities to the variation in ratio N,/N,. For the
whole range 0 < N, /N, < oo of the defect compliance ratio,
the resultant complementary variations in P- and S-velo-
cities are confined within a rather narrow sector enclosed
between the dashed lines corresponding to the ultimate cases
N, /N, =0 (normal compliance is negligibly small) and
N, /N, — o (shear compliance is negligibly small).

Considering Fig. 1 one may pose a question, which pair
of the velocities or elastic parameters should be plotted one
against another in order to get the maximum sensitivity of
the plot to variations in the compliance ratio N,/N, for
the defects? An evident answer is to choose such combi-
nations of the moduli that are equal to the introduced “nor-
mal-" and “shear densities” N, and N, . Such aplot on the
plane (N, N,), besides the relative parameter N,/N,,
directly shows the effective defect densities N, , , whereas
the sector of the allowable variations (see Fig. 1) transforms
into the whole quadrant. Equations (2)—(5) readily yield
for the parameters N, , the required combinations of the
elastic moduli:

N =3(K,, /K =D(1=2y), €))
N, =(5/2)(G,, /G -1 -

—(K,, /K =D (1=-2y)/(1+7). (10)

Result (9) is intuitively quite clear. Indeed, the bulk elas-
tic modulus is sensitive only to the normal (compressional)

compliance of the defects. However, combination (10),
which is sensitive only to the shear compliance of the de-
fects, is not so obvious and it could be readily found just
due to explicit singling out of contributions of the shear
and normal compliances of the defects in Egs. (2)—(6). Be-
low we shall use both the plot of AV [V versus AV [V,

and the plot on the plane (N, N,) using Egs. (9)—(10) and
known expressions relating modulus K with moduli G and
M for S- and P-waves.

Following paper [9], consider the first experimental
example for the Navajo sandstone (data obtained in [25]).
In Fig. 2(a) the raw experimental points for the velocities
are re-plotted in terms of AVg/Vy and AV, /Vy, and are
fitted by the theoretical curves based on Egs. (4) and (5).
The fit for the dry rock corresponds to the compliance ratio
N, /N, =2.35, which is fairly close to the value N,/N, =
=({1+7)2—-v)~ 2 expected for elliptical cracks. For the
saturated rock, this ratio is almost 3 times smaller, N, /N, =
= (.8, which is yet close to unity, but is not nearly zero in
contrast to conventional assumptions for fully-saturated
rocks [13, 20, 21]. This rather high residual normal comp-
liance of the saturated defects indicates that, in the elastic
wave field, the weakly compressible liquid is not “locked”
inside the defects, but squirts forth and back in narrow comp-
liant pores in agreement with the local-flow concept.

Another remarkable feature of Fig. 2(a) is that the expe-
rimental data are well fitted by the theoretical curves cor-
responding to constant values of the ratio N,/N, in the
whole pressure range, which is not an a priori evident pro-
perty. Figure 2(b) additionally indicates that at zero pressure
(when the defects are maximally opened) the effective “shear
density” N, of the defects remains approximately the same
for the dry and saturated Navajo sample. In contrast, the
“normal density” N, for the saturated rock decreases rough-
ly three times due to the presence of liquid in the defects.

The next plot in Fig. 3 (a) is presented in the form similar
to that used in paper [9] and shows the experimental pressure
dependencies of the wave velocities together with the theo-
retical curves corresponding to the above inferred values
of N,/N, . Certainly expressions (2)—(6) do not determine
explicitly the pressure-dependence for N, and N,. Inview
of this in order to plot the theoretical curves in Fig. 3 (a)
starting from the plots on the plane (AV;/Vp, AVy/V),
we had to use the experimentally determined high-pressure
values for the “matrix” velocities and the pressure-depen-
dence of the velocity for one of the two waves. Then for the
other wave the expected values of the velocity were calcu-
lated for the chosen ratio N,/N,. In the form shown in
Fig. 3(a) the deviations between the measurement data and
the resultant theoretical fits are hardly distinguishable. Note
that a similar procedure was actually used in [9] for plotting
analogous theoretical curves for the two waves. In the pro-
cedure, the pressure dependencies for the dry samples were
taken as reference data and then the expected variations in
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Fig. 2. Experimental points for the Navajo sandstone (data from [25])
plotted on the plane AVg/Vg against AV} /Vp (a) and the effective “nor-
mal density” N, against “shear density” N, (b) on the plane (N;, N,).
Empty symbols are for the dry sample, and the filled ones are for the
saturated rock. Solid lines are the theoretical fits for N, /N, =2.35 (dry)
and N,/N, = 0.8 (saturated sample)

the velocities for the saturated samples were added to the
reference values. An example of the curves obtained via
this procedure is shown in the inset in Fig. 3(a). This plot
indicates that the corrections calculated using the Gassman
and Biot models (that is taking into account the saturation
of the equant porosity) do strongly deviate from the expe-
rimental data for the saturated sample. The improved model
by the authors of paper [9] (curve marked by initials M-J)
demonstrates noticeably better results, although the devia-
tion of the improved curve from the experiment is still rather
noticeable (compare with the perfect coincidence of the ex-
perimental points and the fits in Fig. 3(a)). The reasons of
the discrepancy noted in [9] will be elucidated below after
examination of some other examples. In conclusion of the
discussion of the Navajo sample, in the next Fig. 3(b) the
dependencies taken from Fig. 3(a) are re-plotted in terms
of the pressure dependence of Poisson’s ratio. In Fig. 3(b),
although the coincidence with the fits is very good, minor
systematic deviations between the theoretical curve and the
measurements become noticeable for the dry rock (which
could not be distinguished in Fig. 3(a)). Qualitatively the

illustrated in Fig. 3(b) decrease of Poisson’s ratio with in-
creased density of the dry defects (and, in contrast, the Pois-
son ratio growth for the increased concentration of saturated
defects) agree well with known theoretical predictions (see,
for example, [13]). However, in [13] it was predicted that,
at high enough density of the defects, Poisson’s ratio should
become zero together with all elastic moduli, which may
be interpreted as complete fracture of the material. The fol-
lowing example demonstrates that the real situation may be
essentially different.

Following further paper [9], consider the Weber sand-
stone as the next sample. The respective experimental data
(obtained in [25]) are re-plotted in Fig. 4 on the planes
(AVp [Vp, AV [Vs) and (N, N,) together with the theo-
retical fits. Figure 4(b) indicates that the effective “shear
density” N, atzero pressure for the Weber sandstone rema-
ins practically the same in the dry and saturated states, much
like in the case of the Navajo sandstone. However, for the
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Fig. 3. Pressure dependencies for the Navajo sandstone (data from [25])
plotted for the wave velocities (a) and for the Poisson ratio (b). Empty
symbols are for the dry sample, filled symbols are for the saturated rock.
In plot (a) triangles are for the S-wave, circles are for the P-wave. Lines
are the theoretical fits for N} /N, =2.35 (dry)and N,/N, =0.8 (satura-
ted sample). In the inset for comparison the same experimental data for
the P-wave and superimposed model curves are reproduced from paper

(9]
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Fig. 4. Experimental points for the Weber sandstone (data from [25])
plotted on the plane AVg/Vg against AV} /Vp (a) and the effective “nor-
mal density” N, against “shear density” N, (b) on the plane (N, N,).
Empty symbols are for the dry sample, and the filled ones are for the
saturated rock. Solid lines are the theoretical fits for N,/N, =7 (dry)
and N;/N, =0.38 (saturated sample)

Weber sandstone in the saturated state the ratio of the normal
to shear compliance is reduced stronger than in the Navajo
sandstone, from N,/N, ~7 down to N,/N, =0.38. The
difference thus is almost 20 times in contrast to 3 time dif-
ference for the Navajo sample. Furthermore, for the dry
Weber sample the estimated ratio N, /N, ~ 7 is significantly
higher than that expected for such basic models of the de-
fects as elliptical cracks or Hertz-Mindlin contacts. More
detailed examination of Fig. 4(b) indicates that the estimate
of N,/N, atdifferent pressures exhibits noticeable varia-
bility in the range 5—8. The reason for this may be both the
actual variability of the defect parameters and the neglect
of the defect interaction in the theoretical description (note
that the pressure-induced variations in the velocities reached
20-25 % for the saturated sample and over 40 % for the
dry one). However, even the mean constant value N, /N, =
=7 provides a very good theoretical fit for the velocity va-
riations in the whole pressure range, which is shown in
Figs. 4(a) and 5(a).

Finally, Figure 5(b) presents the pressure dependence
of the Poisson ratio for the Weber sandstone. The most re-

markable feature of this plot is the pronounced negative
value of Poisson’s ratio for the dry sample at pressures below
20 MPa, at which the wave velocities are only 25 % reduced
compared to the high-pressure values. This fact contrasts
with the above mentioned model [13], which predicts that
the material should become completely fractured when Pois-
son’s ratio reaches zero. It should be stressed specially that
the character of the relation between the elastic moduli in
the Weber sample indicates that the material is isotropic
with a good accuracy.

Physically the origin of the negative Poisson ratio in
crack-containing materials may be readily understood. Let
us assume first that the compliant planar defects had no
shear compliance at all (that is for them N,/N, — o). If
such defects were all oriented at 45 degrees to the direction
of the uniaxial stress, then such defects should produce equal
additional expansions of the same sign both in the direction
ofthe applied stress and in the orthogonal direction. At high
enough density of such soft defects the contribution of the
solid matrix to the overall strain could be neglected, so that
the effective (and essentially anisotropic) Poisson’s ratio
should tend to minus unity. Certainly for isotropically orien-
ted defects their averaged additional contribution to the ma-
terial expansion should be smaller (but still keep the same
sign for the along-stress and normal directions). Besides,
real defects had a non-zero shear compliance, which additio-
nally diminishes their reducing effect on the Poisson ratio
(see Eq. (6)). In the isotropic case the expression for ultimate
minimum Poisson’s ratio for a fixed value N,/N, #0 fol-
lows from Eq. (6) at very high “normal density” N;:

_ —1+2(1+7)N, /N,
™34 4(1+Y)N, /N,

This expression yields y,_. = —1/3 for the defects without
shear compliance at all (N, /N, — 0). For the Weber sand-
stone with N, /N, =7 we obtain the estimate y_. ~-0.19,
so that the experimental minimum 7y =—0.13 is not so
far from the theoretical limit. The transition from the nega-
tive to positive values of the Poisson ratio is fairly well
described by the theoretical curve (see Fig. 5(b)) based on
equations (2)—(6), which may be ever improved using a kind
of self-consistent approximation in order to accounting for
interaction of the defects.

The next Figures 6 and 7 present the results for the
Nugget V sandstone (data obtained in [26]), for which in
paper [9] an unidentified dispersion mechanism was sup-
posed different from the Biot- and squirt-mechanisms. The
theoretical fits in Fig. 6 indicate that for the saturated Nugget
sample the defect compliance ratio is very close to that for
the Weber sandstone, N, /N, =0.38, whereas for the dry
defects this ratio is N,/N, =4.3, being intermediate bet-
ween the values determined for the Navajo and Weber samp-
les. The Poisson coefficient for the dry Nugget sandstone
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Fig. 5. Pressure dependencies for the Weber sandstone (data from [25])
plotted for the wave velocities (a) and for the Poisson ratio (b). Empty
symbols are for the dry sample, filled symbols are for the saturated rock.
In plot (a) triangles are for the S-wave, circles are for the P-wave. Lines
are the theoretical fits for N;/N, =7 (dry)and N,/N, = 0.38 (saturated
sample). At pressures below 20 MPa the Poisson ratio for the dry sample
is negative

is strongly reduced (down to 0.03), but because of smaller
density of the defects compared to the Weber sample (com-
pare Figs. 6(b) and 4(b)) the negative region is not yet reac-
hed for the Nugget sandstone. The most remarkable feature
of the latter sample, which is visible in Fig. 6(b), is that the
effective shear density N, at zero pressure in the saturated
Nugget V sample is significantly higher than that in the dry
rock. This fact differs significantly from a practically cons-
tant analogous value N, for the first two samples in both
dry and saturated states (compare Fig. 6(b) with Figs. 2(b)
and 4(b)). For the right experimental points in Fig. 6(b)
(corresponding to zero applied pressure) it is clearly seen
that in the Nugget sandstone the parameter N, increases
more than 0.6/0.4 = 1.5 times for the saturated state of the
rock compared to the dry state. Thus the presence of liquid
results in enhancement of the defect shear compliance in
the case of the Nugget sample

The plots for the velocities shown in the next Fig. 7(a)
for the Nugget sample indicate that even at highest pressures
this additional shear compliance of the saturated defects
persists, so that the S-wave velocity in the saturated sample

is noticeably less than in the dry rock. In contrast, for the
Navajo and Weber sandstones the high-pressure wave-ve-
locities became almost equal in the dry and saturated cases.
When these “background” variations in the high-pressure
wave velocities are taken into account, then the comple-
mentary pressure dependencies of the P- and S-wave velo-
cities are perfectly approximated by the fits based on model
[10]. The next Fig. 7(b) displays the pressure dependence
for the Poisson ratio in the Nugget sandstone and also
demonstrates a perfect agreement with the theoretical fits
for both the dry and saturated Nugget samples. Importantly
that the influence of saturation is accounted in model [10]
only via the variation of the compliance ratio N,/N, for
the high-compliant crack-like porosity due to presence of
liquid. This indicates that the role of the local squirt-type
flows inside the high-compliant defects is dominant in the
pressure-dependent wave dispersion. The latter conclusion
relates to all the considered examples including the Nugget
sandstone and similar rocks, for which the interpretation
used in papers [8, 9] apparently indicated the presence of
some unidentified, non-Biot and non-squirt mechanism.

The analysis performed provides an explanation for this
apparent discrepancy mentioned in paper [9], in which the
authors used in their interpretation some expected relation-
ship between the saturation-induced complementary varia-
tions of different elastic moduli. Equations (2)—(6) allow
one to clearly see both the difference and similarity with
interpretation [9]. This interpretation was based on the deri-
ved in [8] relation between the dispersion corrections to
the bulk elastic modulus and the shear modulus for a solid
with defects:

~ 1, (11)

where index “uf” denotes the unrelaxed (high-frequency)
value of the respective modulus, and index “dry” corres-
ponds to the relaxed (low-frequency) moduli. Physically
these frequency-dependent variations of the moduli occur,
since the compliance of the defects can be different at dif-
ferent frequencies. Similar to [8, 9] in Egs. (2)—(6), where
the compliance parameters N, , are not predetermined, one
may consider that variations AN, , of'the effective densities
depend not only on the confining pressure and fluid satura-
tion, but on frequency as well. Thus the resultant comple-
mentary variations in the elastic moduli A(1/G.;) and
A(l/K ) caused by any of the mentioned factors can be
compared with each other. Similar logical conclusions were
used in [8, 9] for the transition from Eq. (11) describing the
frequency-dependent variations of the moduli to the varia-
tions caused by the pressure variation and fluid saturation.
Namely, the complementary variations of moduli G, and
K ¢ ofthe saturated materials were found in [9] by substi-
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Fig. 6. Experimental points for the Nugget V sandstone (data from [26])
plotted on the plane AV [V against AVp /Vp (a) and the effective “nor-
mal density” N, against “shear density” N, (b) on the plane (N, N,).
Empty symbols are for the dry sample, and the filled ones are for the
saturated rock. Solid lines are the theoretical fits for N, /N, =4.3 (dry)
and N;/N, =0.38 (saturated sample)

tuting Eq. (11) into the low-frequency Biot—-Gassman equa-
tions, which yielded approximately:

11
Gsat Gdry

4 1 1 1 1
~— - - - . (12)
15 Ksat Kdry s Ksat Kdry high

Index “6” in (12) is for the current pressure, whereas
“high 6” corresponds to the maximum pressure on the samp-
le (when the compliant defects are closed). Indices “sat”
and “dry” correspond to the saturated and dry states of the
material, respectively. Relations (11), (12) were used in [9]
as criteria of the domination of the squirt-flow mechanism
when examining experimental data. Note that factor 4/15
in Egs. (11), (12) is of geometrical nature and originates
due to averaging over random orientations of the defects,
much like the similar factors in our Egs. (2)—(6). Comparison
between Egs. (2), (4) and (11), (12) indicates that Eqs. (2)
and (4) yield the following analog of Eqgs. (11), (12):
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Fig. 7. Pressure dependencies for the Nugget V sandstone (data from
[26]) plotted for the wave velocities (@) and for the Poisson ratio (b).
Empty symbols are for the dry sample, filled symbols are for the saturated
rock. In plot (@) triangles are for the S-wave, circles are for the P-wave.
Lines are the theoretical fits for N, /N, =4.3 (dry) and N,/N, =0.38
(saturated sample)
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In the derivation of (13) the known relation G =
=(3/2)K (1-2y)/(1+v) was used. Since the bulk modulus
K¢ 1s not sensitive to the variation of the shear density of
the defects, the variation N, is present in the right hand
side of Eq. (13) independently of the variations of K.

Expression (11) agrees with (13) if in the right hand side of
the latter it is possible to neglect the second term or, in
other words, to neglect the contribution of the shear density
N, to the variation of the shear modulus G.;. Equation
(4) indicates that this contribution can be neglected under a
rather strict condition on the compliance ratio N;/N, >

>>3(1+y) > 3. As it was shown above, for the considered
samples (intentionally chosen exactly the same as in [9])
this ratio appeared to fall in the range N,/N, =2-7 for the
dry defects and N,/N, <1 for the saturated ones. There-
fore, even for the dry samples exhibiting ratio N,/N, >1

the assumption N,/N, >>3(1+7) is rather poor in most
cases, not saying about saturated samples with N, /N, <1.
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Concerning the second relation (12), which was used in
[9] as the main criterion of the squirt-mechanism domination
in the course of the comparison between the dry and satura-
ted samples, actually this criterion requires significantly sof-
ter restrictions than Eq. (11), so that assumption N,/N, >>
>>3(1+v) is not necessary. Namely, Eq. (12) with the pro-
portionality coefficient 4/15 may be readily obtained from
Egs. (2), (4) and (13) in the assumption that fluid saturation
does not affect the shear compliance N, of the defects.
Thus criterion (12) implies that the difference between
values G, and Ggy is determined, in our terms, exclusi-
vely by the pressure- and saturation-dependent variation in
“normal density” N, corresponding to the normal comp-
liance of the soft porosity. Therefore, possible “background”
variation of the shear modulus (e.g. related to variation of
N, due to the weakly compliant equant porosity in the whole
range of pressure) as well as the variation in the shear para-
meter N, due to saturation are not taken into account in
the left hand side of criterion (12). In contrast, in the right
hand side of Eq. (12), which in our terms depends only on
the normal density N, the second term in the parentheses
subtracts the “background” variation in the bulk modulus
K, which has been neglected for the shear modulus. There-
fore, the initial assumptions accepted in the derivation of
Eq. (12) strictly speaking are not consistent with each other
and do not take into account possible “background” varia-
tion of the shear density N,. The validity of relation (12)
thus may be broken for samples in which fluid saturation
noticeably affects the shear parameter N,.

The experimental pressure dependencies of S-wave
velocity shown in Fig. 3(a) and 5(a) together with the plots
on the plane (N,, N,) shown in Figs. 2(b), 4(b) indicate
that the assumption on the same shear parameter N, in the
dry and saturated states holds quite well for the Navajo and
Weber sandstones. This fact explains a good agreement with
criterion (12), which was mentioned in [9] for those and
similar samples. On the other hand, for the Nugget sandstone
Figure 7(a) indicates rather significant “background” (high-
pressure) variations both for the P- and S-wave velocities.
This pronounced “background” variation in the shear modu-
lus G due to the aforementioned strong increase of the defect
shear compliance N, in the saturated Nugget sandstone
(see Fig. 6(b)), which was not taken into account in Eq. (12),
resulted in bad agreement with criterion (12). The latter
fact was interpreted in [9] as the manifestation of some un-
identified dispersion mechanism.

On the other hand, in Egs. (2)—(6) and in the theoretical
curves shown in Fig. 7 such “background” variations are
consistently taken into account for both moduli K and G, so
that for the Nugget sample the pressure-dependent part of
the wave dispersion is also very well fitted by the theoretical
curves that account only for the compliance properties of
the high-compliant porosity (including the saturated case).
This is equivalent to taking into account only the squirt-
flows inside the compliant defects.

Here we limit ourselves to the considered instructive
examples, which we intentionally took exactly the same as
in paper [9] for the convenience of the comparison. A
number of other examined experimental records taken from
[8, 9, 27, 28] also exhibited very similar features and all
were well fitted by Egs. (2)—(6) with a high accuracy. Thus
in all considered cases the pressure-dependent experimental
data are described very well by the model accounting only
for the effect of the high-compliant porosity, which corres-
ponds to accounting for the squirt-flows only for the satu-
rated samples. It may be noted that for all law-porosity samp-
les studied in [28] the determined compliance ratio N, /N,
appeared to be close to two, which is typical of the elliptical
crack model.

4. Conclusions

The analysis performed has led us to a number of inferen-
ces, which are important for understanding of the relation
between seismic waves parameters and the microstructure
of rocks. The main conclusion may be summarized as fol-
lows.

Concerning the relation between P- and S-wave veloci-
ties the examination performed indicates that the effective
medium model [10] allows for description of the comple-
mentary variations in the velocities of different types of wa-
ves for both dry and saturated rocks. The procedure of the
performed examination may be considered as a development
of'the approach used in paper [9]. The results of the modified
interpretation indicate strong domination of the squirt-flow
mechanism in the observed complementary pressure varia-
tions in the elastic moduli for the saturated samples. This
conclusion is shown to be valid even for those cases, for
which earlier [9] an unidentified non-squirt and non-Biot
mechanism was supposed.

The suggested approach allowed us to estimate the ratio
N, /N, ofthe normal to shear compliances for real defects,
as well as the effective defect densities N , themselves.
The performed examination indicated a number of unex-
pected results. Namely, for some dry samples, the compli-
anceratio N,/N, was found to be much greater than unity
(e.g., N;/N, =7 for Weber and N, /N, =4.3 for the Nug-
get V sandstones) in contrast to conventionally expected
for this ratio value about unity [13, 16, 21]. Such a high
normal compliance of real defects may result in negative
values of Poisson’s ratio, which we have found for the dry
Weber sandstone at confining pressures below 20 MPa.

On the other hand, for the saturated samples, instead of
the conventionally expected almost zero compliance ratio
[13, 21] we have found values of N,/N, of the order of
unity (for example, N,/N, =0.8 for the saturated Navajo
sandstone). These findings are important for discrimination
of dry and saturated rocks using seismic data.

Another important and not evident a priori inference is
that in all examined cases the compliance ratio N;/N, for
the defects persistently keeps constant value in a wide pres-
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sure range, up to the maximum pressures corresponding to
almost complete closing of the compliant defects. The per-
formed examination has proved that model [10] describes
the microstructure-induced variations in the elasticity with
quite a good accuracy, including the influence of saturation
of the microstructural defect. The revealed features of the
rocks should be taken into account in planning optimal seis-
mo-prospecting and in interpretation of the obtained seismic
data.
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