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Probing Weak Forces in Granular Media through Nonlinear Dynamic Dilatancy:
Clapping Contacts and Polarization Anisotropy
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Rectification (demodulation) of high-frequency shear acoustic bursts is applied to probe the
distribution of contact forces in 3D granular media. Symmetry principles allow for rectification of
the shear waves only with their conversion into longitudinal mode. The rectification is due to nonlinear
dynamic dilatancy, which is found to follow a quadratic or Hertzian power law in the shear wave
amplitude. Evidence is given that a significant portion of weak contact forces is localized below 10~2 of
the mean force — a range previously inaccessible by experiment. Strong anisotropy of nonlinearity for

shear waves with different polarization is observed.
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Introduction.—By manifesting properties of unusual
solids, fluids, or gases under certain conditions, granular
media have become the subject of increasing interest to a
wide audience of physical scientists [1]. For prediction of
the macroscopic mechanical behavior of granular packing
the knowledge of the interparticle force distribution is
essential. There is a consensus between theory and ex-
periment concerning the abrupt exponential decay in the
probability P(f) of finding contacts that carry forces f
larger than the average force f, [1-7]. However, there is
no consensus on the distribution of forces for those
weaker than the average: there are predictions for both
decreasing [4] and increasing [5-7] P(f) for f < f,,. The
existing experimental methods [1-4], which include the
carbon paper method, the use of the balance to measure
normal forces at the bottom of the packings, or visual-
ization methods, have been lacking so far in their range of
sensitivity to delineate between theories concerning the
distribution of very weak forces (f < fj). In reality, all
these methods probe effects that increase with interpar-
ticle force and, as a result, give measurements in which
response of heavily stressed contacts dominates.

Under these circumstances it is highly desirable to
develop experimental methods in which the signal from
the weak contacts is higher than from the strong ones. To
satisfy this requirement it is proposed in this Letter to use
nonlinear acoustics (NA) effects, which are known to be
selectively sensitive, in contradiction to simple intuition,
to the weakest mechanical structural features of the ma-
terial [8]. In contrast with earlier approaches [1-4], the
NA method described here provides information on P(f)
in the bulk, but not at the surface, of three-dimensional
granular structures in the previously inaccessible range
below a few percent of f,. The experimental method is
based on propagation of bursts of high-frequency (HF)
acoustic waves to produce demodulation which is re-
corded to evaluate P(f). In nonlinear acoustics [9,10],
the device based on this principle is called the nonlinear
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parametric antenna (NPA). In the research described
here the shear (S) wave based NPA is used for the first
time. The excitation of the low-frequency S wave due to
the rectification of HF S waves is known to be forbid-
den by the symmetry principle [11]. The operation of
the shear NPA is possible due to dilatancy [12,13], the
tendency of granular materials to expand upon shear-
ing providing nonlinear conversion of S into longitu-
dinal (L) waves. The effect of S-wave rectification
with conversion into L. wave can be used for determin-
ing the amplitude law of the dynamic dilatancy. The
choice of S waves was additionally motivated by the
expectation that the nonlinearity of granular media has
anisotropy which might be probed by rotating the polar-
ization of the S wave.

Preliminary arguments.—Here we present instructive
arguments elucidating why nonlinear acoustic effects are
preferentially sensitive to the presence of the weakest
contacts, which hardly manifest themselves in linear
sound propagation. The Hertz nonlinearity of the contacts
[14] yields, in the simplest case of equal contact loading,
the following relationship between macroscopic stress o
and strain & of the material:

o = bne’?H(g). (1)

Here the factor b depends on elastic moduli of the grains,
n is the average number of the contacts per grain, and the
Heaviside function H(g) indicates that only compressed
(o, € > 0) contacts contribute to the stress in the material.
In real granular materials there are differently loaded
contacts [1-7] that contribute to the resultant o(g). To
illustrate the role of different contacts in linear/nonlinear
phenomena let us suppose that the granular material
contains only two fractions of contacts which are differ-
ently strained. Separating the static (o, &y) and oscilla-
tory (4, &) parts in the total macroscopic stress and strain,
and adding the contributions to total stress from both
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fractions we get with the use of Eq. (1)
(o)) + 7= b}’l](SO + 5)3/21'1(80 + é)
+ bny(wey + )3 2H(uey + 8). (2

Here n; and n, are the mean numbers of contacts per
grain of two considered fractions. The dimensionless
parameter p in Eq. (2) takes into account that the static
prestrain of the two fractions is different while the dy-
namic strain is the same. The reason for this may be
understood from the evaluation of the strain in the
straight vertical chains of beads presented for illustration
in Fig. 1. If the height & of the chains oscillates near its
average value h = hy + ﬁ, then the strain in the chain
composed of N beads of a diameter d each is equal to ¢ =
(Nd — hy — h)/Nd. Let the bead number N, = h,/d cor-
respond to zero strain in the absence of acoustic loading.
Counting the number of beads in the ith column relative
to this neutral level (N; = N, + AN;,, i = 1,2) and taking
into account that AN;/N, < 1 and |A|/hy < 1, the strain
in the column can be approximated by &; ~ AN;/N, +
h/hy. Consequently, the dynamic strain component
h/hy = & is the same for grains belonging to different
chains because they have the same static height. In con-
trast, the static strain s(()’) = AN;/N, for the two columns
presented in Fig. 1 is different since they contain different
numbers of grains (AN; # AN,). Note that the difference
in s(()’) for these columns can be very strong even for
AN;/Ny < 1. Clearly the above model is a quasi-1D
version of what is expected when force chains shield a
part of the grains (‘“spectators”) from being strained.
However, even in 3D packings (with essential tortuosity
of force chains) the dynamic strain in the first approxi-
mation is the same at all the contacts.

In Eq. (2) it is assumed that the second fraction is
weakly loaded in comparison with the first one (u < 1).
In the considered geometry the meaning of u becomes

(b)
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FIG. 1. (a) Diagram of the experiment. A is the force cell; B,
C, and D are longitudinal transducers; and E, F, and G are shear
transducers. Propagation lengths are 15-20 cm. (b) Two grain
chains with essentially different static strains are sketched.
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clear: uw = AN,/AN; < 1. Then under the assumption
ny ~ n, it follows that it is the first fraction that predomi-
nantly carries the static loading and 88) = AN,/N, ap-
proximates the macroscopic strain ;. Summation over a
unit area of the elastic forces from individual chains
yields the macroscopic stress in Eq. (2).

For initially compressed contacts with w > 0 and
|&] < weg, Eq. (2) can be expanded into series in powers
&™ with expansion coefficients d" & (g,)/d&™ character-
izing the linear and nonlinear elastic moduli M,, of the
material:

A
M,, = m o bn1<1 + 2M3/2—m)88/2—m' 3)
dgm n,

Equation (3) indicates that to the linear acoustic signal
(term with m = 1) the contribution of the weak contacts
is proportional to u'/? < 1, and may be negligible for
ny ~ n,. In contrast to this, to the nonlinearity-induced
signals (terms with m = 2) the contribution of the weak
fraction is proportional to u3/2~" > 1, which dominates
at sufficiently small static prestrains pu = 0.1 — 0.01.
Such strains correspond to even smaller forces f/f, =
0.03 — 0.001 which are far beyond the range f/f, = 0.1
commonly accessible by other methods [1-4].

In accordance with Eq. (3), for a small enough primary
acoustic wave amplitude €, = [&| <|uley [when the
power-series expansion of Eq. (2) is valid] the rectified
signal should be quadratic in &,: (&)~ M,e}. For
stronger amplitude wpe) < e, < g, the dominating in
the nonlinearity second term in Eq. (2) (related to the
weak contacts) should be averaged as ((usg, + &)3/2 X
H(uey + 8)) = ((8)2H(&)) producing a rectified signal
(o) ~ 8; 2 Thus, occurrence of the transition 2 — 3/2 in
the amplitude behavior of the demodulated signal at
certain g, should indicate the existence of the contacts
with u ~ €,/s.

Experimental setup.—We observed the demodulation
of intensive L and S elastic waves (“pump”) in glass
beads 2 = 0.1 mm in diameter packed in a plastic cylin-
drical container, 40 cm in diameter and 50 cm in height
(Fig. 1). The vertical loading via a rigid plastic cover was
controlled by a force cell [static stress and strain ranges
were 10—50 kPa and (1-5) X 1074, respectively]. L and S
transducers (respectively, 4 and 3.5 cm in diameter) pro-
duced the pump bursts with carrier frequency of 30—
80 kHz. The same type L transducers were used for
reception. Orientations and polarizations of the trans-
ducers are shown in Fig. 1.

Evidence for weak forces localization.—The radiated
HF modulated L and S waves were demodulated as a
result of contact nonlinearity of the granular medium.
The HF pump decayed within a few cm distance, so that
only the demodulated low-frequency (LF) signal of
~4-6 kHz characteristic frequency was received. In
Fig. 2 the observed dependencies of the LF-signal ampli-
tude on the L- and S-pump amplitudes are shown. The
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FIG. 2. Demodulated signal amplitude versus pump ampli-
tude (vertical propagation). Inset: pressure dependence of vis-
ible (via the time delay) velocities of the demodulated pulses
(with slope 1/4 higher than 1/6 expected for equally loaded
contacts) indicates gradual activation of weak contacts.

main feature for both L and S pumps in Fig. 2 is the initial
quadratic increase in the demodulated signal amplitude
with a rather clear transition to the 3/2 law corresponding
to the Hertz clapping nonlinearity. Importantly, this tran-
sition occurs at an oscillating pump strain &, 15-20 dB
lower than the mean static strain g, which, as elucidated
above, is a signature of weak clapping contacts indicating
strong localization of the contact-force distribution P(f)
below a few percent of the mean force. For Hertzian
contacts where f/f, is proportional to u/2, the contact-
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FIG. 3. Demodulated signal amplitude simulated for constant
n(u) at 0 = u =< 1 (squares) and in the presence of localized
weak fraction (circles) containing 60% of the total contact
amount. The latter simulation provides clear transition 2 — 3/2
in the slope at &, < &j.
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force distribution P(f) can be expressed as a contact-
strain distribution n(w), or vice versa, through the
relation P(f)df o« n(u)du. It is often argued [2,3] that
the force distribution below the mean value f, has a
plateau P(f) = const, or it is at least rather flat on a
logarithmic scale [5,6]. However, we made a simple
computation of the rectified signal (o) using in Eq. (2)
n(u) = const over the range 0 = u =< 1, this distribution
being equivalent to P(f) ~ f~'/3, which is rather close to
theoretical prediction [5]. This computation indicates that
the demodulated signal at sinusoidal excitation remains
nearly perfectly quadratic in g, for the whole range of
normalized pump-strain amplitude (Fig. 3, lower curve),
despite the clapping of weak contacts with u = €,/&,.
Indeed, since the distribution n(u) = const has no frac-
tion strongly localized at u << 1, the amount of clap-
ping contacts essentially grows with an increase in g,.
The resultant demodulated signal thus grows stronger

than 8?;/ % and remains nearly proportional to s% until
€,/€o > 1, at which point practically all contacts in the

material begin to clap producing (o) ~ &3/ *. Therefore

the occurrence of the 2 — 3/2 transition at a point
€,/e9 < 1 clearly indicates the existence of an impor-
tant fraction of contacts strongly localized below u =
0.1. In the clapping regime, it is the total number of
clapping contacts with u < &,/ that has the important
influence on the demodulated signal amplitude. Thus, to
simulate the effect it is enough to add to the background
constant n(u) at 0 = u =<1 a weak contact fraction
localized in the rectangle 0 = u = pug < 1 (in Fig. 3,
o = 0.1 has been chosen). Fine details of n(u) at u << 1
are difficult to reconstruct because of the integral char-
acter of its manifestation. However, clearly the localiza-
tion should be rather strong. At the same time, to fit the
experimental data in Fig. 3 the boundary of the strongly
localized contact-strain distribution should not be too low
(otherwise, for example, wy, = 0.01 would provide the
transition 2 — 3/2 located an order of magnitude lower
in g, than it was in experiment).

Nonlinear dilatancy.—Classical Reynolds’s dilatancy
in the quasistatic deformation of rigid frictionless grains
[12] can be qualitatively understood pure kinematically
[13] as a combination of grains sliding and rotation past
each other. Both the kinematics of incompressible beads
[13] and the linearization of the hypoplasticity equations
[15] predict the linear volumetric expansion (~|egearl)
of the granular material under shear. Such an even-type
piecewise linear dependence should result in the appear-
ance of a demodulated longitudinal signal linearly pro-
portional to the S pump amplitude. Concerning the
nonlinear S to L wave conversion, the observed demodu-
lated LF pulses clearly had L polarization, and their
estimated velocity was almost as high as L wave velocity.
The inset of Fig. 4 shows the LF-pulse shapes for two
different S pump frequencies. For a lower-frequency
pump (that is, longer interaction length with the slower
pump S wave) the pulse acquires additional delay, which
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FIG. 4. Demodulated signal level versus S pump amplitude
(horizontal paths, H and V polarizations). Inset: demodulated-
pulse profiles corresponding to the second derivative of the
leading edge of long S pump bursts.

was not observed for different L pump frequencies.
However, the observed amplitude character of the S
pump demodulation indicates no signs of linear dilatancy
[13,15] in the granular material up to &, ~ &y ~ (1-5) x
1074, since the demodulated L pulses exhibit a 2 or 3/2
power in the dependence on the S pump amplitude, thus
indicating that the dilatancy is essentially nonlinear.
Note that quadratic dynamic dilatancy is predicted for
homogeneous solids [11]. Our experimental results dem-
onstrate for the first time an acoustic (dynamic) dilatancy
following the power 3/2 of the shear strain amplitude
which is the fingerprint of the clapping Hertzian contacts.

Probing contact anisotropy by S waves.—Shear waves
can also be used to probe the contact anisotropy and
presence of force chains oriented along the applied stress
direction through the polarization dependence of the
demodulation effect. As noted above, the magnitude of
the contact nonlinearity is inversely proportional to the
static prestrain [see, e.g., Eq. (3)]; thus, in an anisotropic
material different nonlinearity should be expected for
different S wave polarizations. Figure 4 shows ampli-
tude dependencies of the demodulated signals from iden-
tical S pump sources directed horizontally, but having
orthogonal vertical (V) and horizontal (H) polariza-
tions. The plots indicate that, first, the H-polarized
pump produced ~10 dB higher-amplitude signals than
the V-polarized pump; second, transition to clapping
(2 — 3/2) occurred 7-12 dB lower in amplitude for the
H-polarized pump than for the V-polarized pump. Both
features indicate a nonlinear parameter several times
higher for the H-polarized wave than for the V-polarized
wave, which means that the horizontal contacts are, in-
deed, more weakly loaded than vertical ones by roughly
1 order of magnitude. For a HF shear pump having
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circular polarization rotating with frequency (), this
anisotropic dilatancy may result in a demodulated L
wave at even harmonics 2kQ, k= 1,2, ....

Conclusions.—The results obtained confirm that NA
effects can selectively probe the weak contact portion of
the force distribution in granular media despite a rather
high background of strong force contacts. In order to
explain the signal magnitude and the clear transition
2 — 3/2 in the amplitude dependence of the demodulated
wave, it is necessary to assume a large fraction of weak
contacts over 60%—70% of the total, which is strongly
localized near zero force. For irregular grain shapes, as
in dry sand, the localization is even stronger, since the
initially quadratic dependence could not be observed at
all [10]. The localization extracted from our data is strong
in the sense that it is inconsistent with a smooth power
law of the form P(f) < f~% (f < f,) predicted both for
2D monodisperse granular systems with friction (@ =
0.5) [6] and 2D polydisperse frictionless systems (a =
0.3) [5]. Our inferences agree qualitatively with recent
3D molecular dynamics simulation [7] of monodisperse
unloaded packings with friction indicating an abrupt
upturn in P(f) at very small values of f (f = 0.1f,),
and should stimulate further theoretical modeling.
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