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Abstract

Materials with hysteretic non-linearity have the property of memorizing specific previous extrema in the stress/strain loading

history. Because of this complexity, the analytical theory describing the non-linear evolution of acoustic waves in such materials is

currently restricted to simplex wave propagation processes with a single minimum and a single maximum over a wave period. In the

present paper a numerical model is presented which is valid for an arbitrary strain wave profile, and the results for the frequency-

mixing process in acoustic waves composed initially of two harmonic frequency components are analyzed. The model simulations

demonstrate that an initially complex wave transforms into a simplex wave during propagation. In addition, we have studied the

mutual influence of the initial frequency components, and we have found regimes of induced absorption and induced transparency.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Acoustic experiments conducted in different types of
materials (including, for example, polycrystalline metals

[1–4], rocks [5–8] and ceramics [9]) lead to the conclusion

on the universality of hysteresis of non-linear properties

in the sense that hysteresis is characteristic of a large

class of micro-inhomogeneous materials [2,10]. As a

result of hysteresis, these materials have the fascinating

property to memorize their acoustical loading history

[11,12]. In particular, the material always ‘‘remembers’’
at least the extremum previous to the current condition,

as well as the absolute maximum and the absolute

minimum of the loading history.

Both end-point memory and hysteretic non-linearity

can be successfully modelled in a phenomenological
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manner by using the so-called Preisach–Mayergoyz

(PM) space formalism [13–16]. In the PM-space ap-

proach it is assumed that the response of a material to
external excitation is a linear superposition of the indi-

vidual responses of hysteretic mechanical elements.

These elements act like triggers, i.e. they can be found in

one of two states (‘‘open’’ or ‘‘closed’’).

Exact analytical solutions for the propagation of non-

linear waves in materials with hysteretic non-linearity

are obtained [17–19] for the so-called ‘‘simplex’’ waves

[20], i.e. periodic waves with a single maximum and a
single minimum over a period. Qualitatively this was

possible because there were only two end points (ex-

trema) to be kept in memory during the wave profile

transformation. However, if an acoustic wave contains

additional local extrema apart from the absolute ex-

trema (‘‘complex’’ wave [20]), the problem of memoriz-

ing and erasing the end-points during the process of

wave propagation becomes hardly tractable in an ana-
lytical formalism. This is exactly the point at which

numerical modelling can help.

In the present paper we develop a numerical scheme

for the evaluation of non-linear propagation of an
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arbitrary acoustic signal, and present the results of this

simulation in the case of an initially bi-harmonic signal,

i.e., the acoustic wave at the boundary is composed of

two harmonic waves at a fundamental frequency (x)
and its doubled frequency (2x).
open state

instant
opening 

instant 
closing 

σo 

s sc so

Fig. 1. Model of an individual hysteretic element M. The element is

parameterized by the values of so; sc and Dr ¼ rc � ro.
2. Evolution equation for a medium with hysteretic non-

linearity and its solution

Using the well-known method of a slowly varying

wave profile (multiple time-scale technique) described,

for example, in [21], we arrive at the ‘‘shortened’’ (evo-
lution) equation for the slowly varying strain profile

s � ou=ox while propagating in the positive direction of
the x-axis

os
ox

þ vðx; sÞ os
os

¼ 0: ð1Þ

Here s ¼ t � x=c0 denotes the ‘‘fast’’ retarded time, x
is the ‘‘slow’’ evolution coordinate and

vðx; sÞ ¼ � 1

2q0c
3
0

orH
os

; ð2Þ

where c0 is the sound velocity, q0 is density and rH is a
contribution to the stress due to the presence of hys-

teretic elements.

In order to complete the model one should introduce

an appropriate stress–strain relationship at this point.

Following the ideas of the Preisach–Mayergoyz space
formalism we assume here that the non-linear contri-

bution to stress can be represented by a linear super-

position of the contributions rM from a statistical

ensemble of individual hysteretic mechanical elements

located at position x:

rHðsðx; sÞÞ ¼
X
M2x

rM: ð3Þ

Here the subscript M denotes the mechanical elements

in the elementary volume at a coordinate x.
By considering the PM formalism, we replace the

study of a complicated system consisting of multiple

microscopic cracks (or defects) with the consideration of

fictional elements, that can be found in one of two

states: ‘‘open’’ or ‘‘closed’’ (we will denote these states as
SðMÞ ¼ ‘‘O’’ and SðMÞ ¼ ‘‘C’’, respectively). The
parameters of such an element are rc, ro, sc, so (see Fig.
1). Here so is the strain value at which the element opens
while we increase s, and sc is the value needed to close it
if strain decreases (sc < so).
In order to evaluate the derivative orH=os ¼

P
M2x

orM=os one needs to differentiate the curve plotted in
Fig. 1. Mathematically, we obtain (with dðsÞ ¼ 1 if
s ¼ 0, dðsÞ ¼ 0 if s 6¼ 0, and Dr ¼ rc � ro)
orM
os

¼ �Dr

dðs� soÞ; if SðMÞ ¼ C; os=os > 0

dðs� scÞ; if SðMÞ ¼ O; os=os < 0

0; if SðMÞ ¼ C; os=os < 0

0; if SðMÞ ¼ O; os=os > 0:

8>>><
>>>:

ð4Þ
By substituting this expression in Eq. (3), one can

calculate vðx; sÞ using Eq. (2). Note that at each value
of strain and after calculation of the derivative given

by Eq. (4), we must keep track of the state SðMÞ of
each hysteretic mechanical element. Therefore we have

to reassign SðMÞ to ‘‘O’’ in the first case considered in
Eq. (4) when s becomes larger than so and to ‘‘C’’ in
the second case when s becomes smaller than sc In other
words, the state SðMÞ of an element M depends not

only on the current value of strain but also on the strain
rate:

SðMÞ ¼

\O"; if so6 s

\O"; if sc6 s6 so; os=os < 0

\C"; if s6 sc
\C"; if sc6 s6 so; os=os > 0

;

8>>><
>>>:

ð5Þ

as it is illustrated in Fig. 1. Here one should stress the

principal feature of the system under study: only the

elements changing their state under a current s con-
tribute to stress variation.

For simplicity we will consider Dr ¼ ro � rc to be
equal for all the elements and independent of x. In
addition we assume a uniform distribution f ðso; scÞ ¼
f0 ¼ const of hysteretic mechanical elements within the
PM space. This formalism enables us to interpret

f ðso; scÞdsodsc as the number of mechanical elements in
the PM rectangle ðso; so þ dsoÞ 
 ðsc; sc þ dscÞ.
Making use of the above simplifications and replacing

the summation over all elements in Eq. (3) with an
integration over the entire PM space, we obtain the

following expression:
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Fig. 3. Parameterization of the PM-space configuration by the corner

points A1;A2; . . . ;Al . . .AL of the boundary between open (light gray)

and closed (dark gray) areas. The ‘‘switching line’’ is the vertical

interval A1S, the ‘‘switching section’’ corresponds to the portion A1A2.
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orH
os

¼
Z þ1

�1
dsc

Z þ1

�1
dso

orM
os

f ðso; scÞ

¼ f0

Z so

�1
dsc

Z þ1

sc

dso
orM
os

ð6Þ

The latter expression, together with Eqs. (1), (2), (4) and

(5) describe the propagation of a strain wave in a

material with hysteretic elements.

To completely solve the problem, we consider the

boundary condition sðx ¼ 0; sÞ ¼ sbðsÞ and an initial
condition for the state of the elements SðMÞjs¼0 ¼
S0ðMÞ, that can, in general, depend on x. This initial
state is usually unknown in a real situation, but for any

given distance x after a transition time of several cycles
of strain oscillation the stored initial memory will be lost

and the solution will become strictly periodical.

A graphical illustration of the hysteretic element

switching procedure is plotted in Fig. 2(a), which con-

tains a series of ‘‘snap-shots’’ in PM-space, corre-

sponding to different points (0–15) of the strain curve
sðsÞ in Fig. 2(b). The strain evolution presented in Fig.
2(b) is chosen rather arbitrary.

Now let us examine the evolution of vðx; sÞ (Eq. (2)).
To illustrate the process of switching we have plotted a

more detailed visualization in Fig. 3. After passing some
Fig. 2. Illustration of the switching procedure in PM space. The pic-

tures 0–15 (a) are patterns in the (so; sc)-PM-space corresponding to
the points 0–15 on the strain curve sðsÞ below (b). The arrows indicate
the direction of switching. Areas containing open elements are plotted

in light gray, areas containing the closed elements are dark gray. The

‘‘switching lines’’ are marked by thin lines in each portrait, the

‘‘switching sections’’ are marked by the thicker portion of the

‘‘switching line’’. The pictures 2, 5, 7, 9, 12, 15 correspond to end

points (absolute and local extrema of sðsÞ).
extrema of sðsÞ, any possible PM configuration will
contain two areas (one area with fully open elements,

and one area with only fully closed elements), separated

by a broken line A1A2 . . .AL. The coordinates of a node

Al (l ¼ 1; 2; . . . ; L) are denoted as (Ol;Cl). The current

value of strain s determines the switching line A1S. In the
illustrated case this line is vertical and performs an

‘‘opening’’-operation, os=os > 0. The reasoning is anal-
ogous for ‘‘closing’’-operations (see later). If os=os > 0,
then orM=os ¼ �Drdðs� soÞ or orM=os ¼ 0 (cf. Eq.
(4)). Hence Eq. (6) reads:

orH
os

¼ f0

Z so

�1
dsc

Z þ1

sc

orM
os
dso ¼ f0Dr

Z s

�1
Xdsc; ð7Þ

where X ¼ �1 if orM=os ¼ �Drdðs� soÞ, and X ¼ 0 if
orM=os ¼ 0. As a result, the integration along the
switching line A1S (i.e. �1 < sc < s) in Eq. (7) reduces
to the integration along the ‘‘switching section’’ A1A2
(see Fig. 3), i.e.:

orH
os

¼ f0Dr
Z s

�1
Xdsc ¼ f0Dr

Z s

C2

ð�1Þdsc

¼ �f0Drðs� C2Þ: ð8Þ

In the case os=os < 0 (closing-operation) the above
Eq. (8) is analogous:

orH
os

¼ �f0DrðO2 � sÞ: ð9Þ

After deriving the initial function v from the initial

conditions, the procedure of building the subsequent
solution in space and time becomes evident: we numer-

ically solve Eq. (1) using central differences, update and

store the coordinates of the points Al in PM-space at
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each step, and use them to calculate vðx; sÞ according to
Eqs. (8) and (9).
3. Results of the numerical solution of the evolution
equation

Before we discuss the results, we remark that all

variables have been normalized: s0 ¼ s=s0, s0 ¼ f s, x0 ¼
x=xnl, where s0 is a characteristic strain value, f is a
fundamental frequency, and xnl ¼ 2q0c

3
0

� 	
=ðfs0Drf0Þ. In

the following, the primes will be omitted everywhere.

To estimate the precision provided by the numerical
method we have compared numerical results for a pure

harmonic excitation (boundary condition sðx ¼ 0; sÞ ¼
sin 2p) with the existing analytical solution [17]. For
8192 points per s-period we found the precision in the
harmonics amplitudes, defined by

sðx; sÞ ¼
X1
n¼0

ZnðxÞ sinð2pns þ wnðxÞÞ; ð10Þ

within 0.03%, 0.46%, 0.47%, and 1.3% for the third,

fifth, seventh and ninth harmonics, respectively. (It is

well-known that even harmonics are not generated in a
purely hysteretic case.)

However, our purpose is to treat more complicated

excitation signals containing two or more extrema per

period (‘‘complex’’ waves). For instance, the signal:

sðx ¼ 0; sÞ ¼ A1 sin 2ps þ A2 sin 4ps; ð11Þ
is simplex (one pair of extrema per period) when A2 <
A1=2 and complex in the opposite case.
Figs. 4 and 5 represent the strain profiles and their

spectra for typical simplex and complex processes. The
remarkable feature observed in the spectrum evolution
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Fig. 4. Non-linear distortion of a bi-harmonic strain wave signal (a), and t

frequencies nx (b). The initial signal equals sðx ¼ 0; sÞ ¼ A1 sin 2ps þ A2 sin 4
is the faster initial growth of the 4x-wave-component in
comparison with the 3x-component. At first glance this
looks unexpectedly because the efficiency of the process

ðxÞ þ 2ðxÞ ¼ 3x is proportional to A21, while the effi-
ciency of the process of the 4x-component generation
ð2xÞ þ 2ðxÞ ¼ 4x (where one phonon of the 2x-wave is
combined with two phonons of the x-wave) is propor-
tional to A1A2, and this is normally lower than A21 since
we have taken A2 
 A1. However, it should be taken
into account that in the presence of the 2x-wave there is
an additional process of direct excitation of the third

harmonic: �ðxÞ þ 2ð2xÞ ¼ 3x, where two phonons of
the 2x-wave are combined with a phonon of the x-
wave. Clearly, if the latter process is acting in anti-phase

to the process ðxÞ þ 2ðxÞ ¼ 3x, its existence could be
responsible for the decrease of the 3x-amplitude in the
presence of the 2x-wave (Figs. 4 and 5) in comparison
with the case of a purely monochromatic input.

Another important feature which can be extracted

from the analysis of the wave profile transformation

shown in Fig. 5(a) is the gradual transformation of a
complex wave into a simplex wave with increasing

propagation distance. The local maximum disappears

due to the hysteretic absorption. Hysteretic absorption

has a very clear ‘‘geometrical’’ manifestation that can be

observed near the wave extrema. In fact, similar to the

case of a pure sinusoidal wave [17,18] (or to the case of

the acoustic pulses [19]) the leading part of the wave

profile near the extremum is always delayed due to non-
linear effects relative to the trailing part. An extremum

itself is the intersection point of these increasing and

decreasing (or vice versa) parts of the profile where the

leading part moves near the extremum in the direction

of the trailing part [17]. Indeed, the formal mathematics

demonstrates that the non-linear contribution to sound
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Fig. 5. Non-linear distortion of a bi-harmonic strain wave signal (a), and the distance dependence of the spectral amplitudes ZnðxÞ for different
frequencies nx (b). The initial signal equals sðx ¼ 0; sÞ ¼ A1 sin 2ps þ A2 sin 4ps, with A1 ¼ 1, A2 ¼ 0:7 (‘‘complex’’ profile).
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velocity is always negative just before reaching an

extremum and is equal to zero just after the extremum.

The continuous mutual ‘‘penetration’’ of these leading

and trailing parts leads to the observed reduction of the

strain amplitude (compare for example the profiles at
x ¼ 0 and x ¼ 0:5 in Fig. 4(a)).
Though the obtained results concerning the higher

harmonics are interesting, the higher harmonics excited

in the multiple-phonon processes are usually small in

comparison with fundamental ones (less than 5%).

Consequently, it may be more instructive to analyze the

mutual influence of the initial wave components in the

process of frequency mixing. In Fig. 6, we illustrate
the dependence of the amplitude of one wave component

on the amplitude of the other one at different distances

from the boundary. A careful examination of the results

in Fig. 6 leads to the conclusion that at short propaga-

tion distances (x ¼ 0:05) the increase in the amplitude of
either the x-component (A1) or the 2x-component (A2)
generally induces additional absorption (oðZ1=A1Þ=
oA1 < 0, oðZ1=A1Þ=oA2 < 0, oðZ2=A2Þ=oA2 < 0), with Z1;2
defined in Eq. (10)). Only the dependence of the 2x-wave
amplitude on the amplitude of the x-wave exhibits a
regime of the induced transparency (oðZ2=A2Þ=oA1 > 0)
in the neighborhood of A1 � 1:5 (Fig. 6(b)). At larger
propagation distances this induced transparency regime

becomes more pronounced, and intervals of induced

transparency are also predicted for the influence of 2x-
wave on the x-component as well (Fig. 6(c), for xP 0:2
and A2 � 1). Moreover, self-induced transparency can be
observed for the 2x-component as function of the 2x-
wave amplitude at sufficiently large distances (Fig. 6(d),

oðZ2=A2Þ=oA2 > 0 for xP 0:3 and A26 0:5).
The numerical predictions of the existence of induced

transparency effects at short propagation distances

indicate that these effects (at least near the boundary)

are not due to a simple wave spectrum transformation
but must be attributed to the peculiar features of local

non-linear hysteretic absorption in the two-frequency

mixing process. To verify this, we should analyze the

local hysteretic absorption of both x-and 2x-oscilla-
tions at the boundary x ¼ 0. Fortunately, in the case of
sðx ¼ 0; sÞ ¼ A1 cos 2ps þ A2 cos 4ps, it is possible to
develop an analytical description of the local hysteretic

absorption in addition to numerical treatment. The
analytical results confirm the effects predicted numeri-

cally in this paper and provide additional insight in the

physics of frequency mixing in materials with hysteretic

quadratic non-linearity [22]. A detailed analysis will be

presented in [23].
4. Conclusions

The numerical framework is developed for the anal-

ysis of plane acoustic wave propagation in non-linear
hysteretic materials. A numerical investigation of the x-
and 2x-wave mixing process in materials with hysteretic
quadratic non-linearity revealed multiple complex phe-

nomena due to hysteresis and memory in the considered

materials.
It was found that for certain combinations of the

x- and 2x- input waves the efficiency of the fourth
harmonic (4x) component generation can exceed the
efficiency of the third harmonic (3x) excitation. In
addition, the transformation of a complex wave into a

simplex wave during non-linear propagation has been

demonstrated.

Peculiar regimes of induced transparency (for which
an increasing amplitude of the x (2x)-wave leads to a
reduction of the absorption of 2x (x)-wave) are pre-
dicted. Also, the existence of a regime of self-induced

transparency (for which in the presence of the x-wave
an increasing amplitude of the 2x-wave induces a
reduction of the absorption of the 2x-wave) has been
demonstrated.

The obtained results are expected to find applications
in the non-destructive evaluation of hysteretic materials

and in seismology.
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