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Abstract

Materials with hysteretic non-linearity have the property of memorizing specific previous extrema in the stress/strain loading
history. Because of this complexity, the analytical theory describing the non-linear evolution of acoustic waves in such materials is
currently restricted to simplex wave propagation processes with a single minimum and a single maximum over a wave period. In the
present paper a numerical model is presented which is valid for an arbitrary strain wave profile, and the results for the frequency-
mixing process in acoustic waves composed initially of two harmonic frequency components are analyzed. The model simulations
demonstrate that an initially complex wave transforms into a simplex wave during propagation. In addition, we have studied the
mutual influence of the initial frequency components, and we have found regimes of induced absorption and induced transparency.
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1. Introduction

Acoustic experiments conducted in different types of
materials (including, for example, polycrystalline metals
[1-4], rocks [5-8] and ceramics [9]) lead to the conclusion
on the universality of hysteresis of non-linear properties
in the sense that hysteresis is characteristic of a large
class of micro-inhomogeneous materials [2,10]. As a
result of hysteresis, these materials have the fascinating
property to memorize their acoustical loading history
[11,12]. In particular, the material always “remembers”
at least the extremum previous to the current condition,
as well as the absolute maximum and the absolute
minimum of the loading history.

Both end-point memory and hysteretic non-linearity
can be successfully modelled in a phenomenological
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manner by using the so-called Preisach-Mayergoyz
(PM) space formalism [13-16]. In the PM-space ap-
proach it is assumed that the response of a material to
external excitation is a linear superposition of the indi-
vidual responses of hysteretic mechanical elements.
These elements act like triggers, i.e. they can be found in
one of two states (“open” or “closed”).

Exact analytical solutions for the propagation of non-
linear waves in materials with hysteretic non-linearity
are obtained [17-19] for the so-called “‘simplex” waves
[20], i.e. periodic waves with a single maximum and a
single minimum over a period. Qualitatively this was
possible because there were only two end points (ex-
trema) to be kept in memory during the wave profile
transformation. However, if an acoustic wave contains
additional local extrema apart from the absolute ex-
trema (“‘complex” wave [20]), the problem of memoriz-
ing and erasing the end-points during the process of
wave propagation becomes hardly tractable in an ana-
Iytical formalism. This is exactly the point at which
numerical modelling can help.

In the present paper we develop a numerical scheme
for the evaluation of non-linear propagation of an
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arbitrary acoustic signal, and present the results of this
simulation in the case of an initially bi-harmonic signal,
i.e., the acoustic wave at the boundary is composed of
two harmonic waves at a fundamental frequency (w)
and its doubled frequency (2w).

2. Evolution equation for a medium with hysteretic non-
linearity and its solution

Using the well-known method of a slowly varying
wave profile (multiple time-scale technique) described,
for example, in [21], we arrive at the “shortened” (evo-
lution) equation for the slowly varying strain profile
s = Ou/0x while propagating in the positive direction of
the x-axis

Os Os

—+v(x,7)=—=0. 1

U T) 5 (1)
Here 1 =t — x/cy denotes the “fast” retarded time, x

is the “slow’ evolution coordinate and

1 aO'H
v(x, 1) = _Tocé o5 (2)

where ¢ is the sound velocity, p, is density and oy is a
contribution to the stress due to the presence of hys-
teretic elements.

In order to complete the model one should introduce
an appropriate stress—strain relationship at this point.
Following the ideas of the Preisach—-Mayergoyz space
formalism we assume here that the non-linear contri-
bution to stress can be represented by a linear super-
position of the contributions oy from a statistical
ensemble of individual hysteretic mechanical elements
located at position x:

on(s(x, 7)) = ZGM- (3)

Mex

Here the subscript M denotes the mechanical elements
in the elementary volume at a coordinate x.

By considering the PM formalism, we replace the
study of a complicated system consisting of multiple
microscopic cracks (or defects) with the consideration of
fictional elements, that can be found in one of two
states: “open” or “closed” (we will denote these states as
S(M) =“0” and S(M) = “C”, respectively). The
parameters of such an element are o, 0y, sc, 5, (see Fig.
1). Here s, is the strain value at which the element opens
while we increase s, and s is the value needed to close it
if strain decreases (s¢ < $o).

In order to evaluate the derivative doy/0s = >\ e,
Oowm/0s one needs to differentiate the curve plotted in
Fig. 1. Mathematically, we obtain (with J(s) = oo if
s=0,0(s)=0if s £0, and Ao = 6. — 0,)
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Fig. 1. Model of an individual hysteretic element M. The element is
parameterized by the values of s,,s. and Ag = g, — 0.

o(s —s,), iIfSM)=C, 0s/0t>0
dom _ Ao o(s —s.), if SM)=0, 0s/ot<0
Os 0, if SM)=C, 0s/or <0
0, if SM) =0, 0s/0t > 0.

(4)

By substituting this expression in Eq. (3), one can
calculate v(x, ) using Eq. (2). Note that at each value
of strain and after calculation of the derivative given
by Eq. (4), we must keep track of the state S(M) of
each hysteretic mechanical element. Therefore we have
to reassign S(M) to “O” in the first case considered in
Eq. (4) when s becomes larger than s, and to “C” in
the second case when s becomes smaller than s, In other
words, the state S(M) of an element M depends not
only on the current value of strain but also on the strain
rate:

440777 lf So g §
‘07, if se<s<s,, 0s/0T <0

S(M) = Tall) : 5 (5)
C”, if s<s,
“C”v if S <8< So,s aS/aT>O

as it is illustrated in Fig. 1. Here one should stress the
principal feature of the system under study: only the
elements changing their state under a current s con-
tribute to stress variation.

For simplicity we will consider Ao = g, — o, to be
equal for all the elements and independent of x. In
addition we assume a uniform distribution f(so,s;) =
fo = const of hysteretic mechanical elements within the
PM space. This formalism enables us to interpret
f(s0,8¢c)dsods. as the number of mechanical elements in
the PM rectangle (so, 50 + dso) X (sc,Sc + dsc).

Making use of the above simplifications and replacing
the summation over all elements in Eq. (3) with an
integration over the entire PM space, we obtain the
following expression:
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aGH / ds, / ds, —— 60M S (s0,8¢)
_ dom
— 5 [ ds, / ds, 2 (6)

The latter expression, together with Egs. (1), (2), (4) and
(5) describe the propagation of a strain wave in a
material with hysteretic elements.

To completely solve the problem, we consider the
boundary condition s(x =0,7) =sp(r) and an initial
condition for the state of the elements S(M)|,_, =
So(M), that can, in general, depend on x. This initial
state is usually unknown in a real situation, but for any
given distance x after a transition time of several cycles
of strain oscillation the stored initial memory will be lost
and the solution will become strictly periodical.

A graphical illustration of the hysteretic element
switching procedure is plotted in Fig. 2(a), which con-
tains a series of “‘snap-shots” in PM-space, corre-
sponding to different points (0-15) of the strain curve
s(t) in Fig. 2(b). The strain evolution presented in Fig.
2(b) is chosen rather arbitrary.

Now let us examine the evolution of v(x, 7) (Eq. (2)).
To illustrate the process of switching we have plotted a
more detailed visualization in Fig. 3. After passing some
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Fig. 2. Illustration of the switching procedure in PM space. The pic-
tures 0-15 (a) are patterns in the (so, sc)-PM-space corresponding to
the points 0-15 on the strain curve s(t) below (b). The arrows indicate
the direction of switching. Areas containing open elements are plotted
in light gray, areas containing the closed elements are dark gray. The
“switching lines”” are marked by thin lines in each portrait, the
“switching sections” are marked by the thicker portion of the
“switching line”. The pictures 2, 5, 7, 9, 12, 15 correspond to end
points (absolute and local extrema of s(7)).

»
»

s 0, A So

Fig. 3. Parameterization of the PM-space configuration by the corner
points Ay,4,,...,A4;...A; of the boundary between open (light gray)
and closed (dark gray) areas. The ‘“‘switching line” is the vertical
interval 4;S, the “switching section” corresponds to the portion 4,4,.

extrema of s(t), any possible PM configuration will
contain two areas (one area with fully open elements,
and one area with only fully closed elements), separated
by a broken line 414, ...A;. The coordinates of a node
A; (I1=1,2,...,L) are denoted as (O;, C;). The current
value of strain s determines the switching line 4;S. In the
illustrated case this line is vertical and performs an
“opening”’-operation, 0s/0t > 0. The reasoning is anal-
ogous for “closing”’-operations (see later). If ds/0t > 0,
then Oop/0s = —Agd(s —s,) or dom/0s =0 (cf. Eq.
(4)). Hence Eq. (6) reads:

+0o0
%_fO/ dsc/ a0-—Mdso

where Q = —1 if 0oy /0s = —Add(s —s,), and Q =0 if
Oop/0s = 0. As a result, the integration along the
switching line 4;S (i.e. —oo0 < s, < s) in Eq. (7) reduces
to the integration along the “‘switching section” 4,4,
(see Fig. 3), i.e.:

fAc [ D ds,  (7)

o0

a S s
gH —fOAa/desC foAa/Cz(l)dsc
= —foAO'(S— Cz) (8)

In the case 0s/0t < 0 (closing-operation) the above
Eq. (8) is analogous:
0
aif = —foAO’(Oz — S). (9)
After deriving the initial function v from the initial
conditions, the procedure of building the subsequent
solution in space and time becomes evident: we numer-
ically solve Eq. (1) using central differences, update and
store the coordinates of the points 4; in PM-space at
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each step, and use them to calculate v(x, 7) according to
Eqgs. (8) and (9).

3. Results of the numerical solution of the evolution
equation

Before we discuss the results, we remark that all
variables have been normalized: s’ = s/s¢, 7' = f1, X' =
x/xn, where sy is a characteristic strain value, f is a
fundamental frequency, and x,; = (2pyc3)/(fsoAcfy). In
the following, the primes will be omitted everywhere.

To estimate the precision provided by the numerical
method we have compared numerical results for a pure
harmonic excitation (boundary condition s(x = 0,7) =
sin2n) with the existing analytical solution [17]. For
8192 points per t-period we found the precision in the
harmonics amplitudes, defined by

s(x, 1) = iZ,,(x) sin(2znt + ,(x)), (10)

within 0.03%, 0.46%, 0.47%, and 1.3% for the third,
fifth, seventh and ninth harmonics, respectively. (It is
well-known that even harmonics are not generated in a
purely hysteretic case.)

However, our purpose is to treat more complicated
excitation signals containing two or more extrema per
period (“‘complex” waves). For instance, the signal:

s(x =0,7) = 4, sin 2nt + A, sin 4nr, (11)

is simplex (one pair of extrema per period) when 4, <
A;/2 and complex in the opposite case.

Figs. 4 and 5 represent the strain profiles and their
spectra for typical simplex and complex processes. The
remarkable feature observed in the spectrum evolution
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=
=
E 0.0 /
054
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0.0 0.2 0.4 0.6 0.8 1.0
retarded time 7

spectral amplitudes Z,(x)

is the faster initial growth of the 4w-wave-component in
comparison with the 3w-component. At first glance this
looks unexpectedly because the efficiency of the process
(w) +2(w) = 3w is proportional to 43, while the effi-
ciency of the process of the 4w-component generation
(2w) + 2(w) = 4w (wWhere one phonon of the 2w-wave is
combined with two phonons of the w-wave) is propor-
tional to 4;4,, and this is normally lower than 47 since
we have taken A, <« 4;. However, it should be taken
into account that in the presence of the 2w-wave there is
an additional process of direct excitation of the third
harmonic: —(w) + 2(2w) = 3w, where two phonons of
the 2w-wave are combined with a phonon of the w-
wave. Clearly, if the latter process is acting in anti-phase
to the process (w) + 2(w) = 3w, its existence could be
responsible for the decrease of the 3w-amplitude in the
presence of the 2w-wave (Figs. 4 and 5) in comparison
with the case of a purely monochromatic input.
Another important feature which can be extracted
from the analysis of the wave profile transformation
shown in Fig. 5(a) is the gradual transformation of a
complex wave into a simplex wave with increasing
propagation distance. The local maximum disappears
due to the hysteretic absorption. Hysteretic absorption
has a very clear ““geometrical”” manifestation that can be
observed near the wave extrema. In fact, similar to the
case of a pure sinusoidal wave [17,18] (or to the case of
the acoustic pulses [19]) the leading part of the wave
profile near the extremum is always delayed due to non-
linear effects relative to the trailing part. An extremum
itself is the intersection point of these increasing and
decreasing (or vice versa) parts of the profile where the
leading part moves near the extremum in the direction
of the trailing part [17]. Indeed, the formal mathematics
demonstrates that the non-linear contribution to sound

0.5
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0.00 I T T T T T T T T T ]

0.0 0.1 0.2 0.3 0.4 0.5
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Fig. 4. Non-linear distortion of a bi-harmonic strain wave signal (a), and the distance dependence of the spectral amplitudes Z,(x) for different
frequencies nw (b). The initial signal equals s(x = 0, 1) = 4, sin2nt + 4, sin4dnt, with 4] = 1, 4, = 0.2 (“simplex” profile).
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Fig. 5. Non-linear distortion of a bi-harmonic strain wave signal (a), and the distance dependence of the spectral amplitudes Z,(x) for different
frequencies nw (b). The initial signal equals s(x = 0,7) = 4; sin 2nt + 4, sin4nz, with 4; =1, 4 = 0.7 (“complex” profile).
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Fig. 6. Normalized spectral amplitudes Z; /4, (a, ¢) and Z» /A4, (b, d) for different distance x as function of the amplitude 4; (4> = 1 = const) (a, b)
and of 4, (41 = 1 = const) (c, d), calculated for the initial signal s(x = 0,7) = 4, sin 2%t + 4, sin 4=.



1058 V. Aleshin et al. | Ultrasonics 42 (2004) 1053-1059

velocity is always negative just before reaching an
extremum and is equal to zero just after the extremum.
The continuous mutual “penetration” of these leading
and trailing parts leads to the observed reduction of the
strain amplitude (compare for example the profiles at
x =0 and x = 0.5 in Fig. 4(a)).

Though the obtained results concerning the higher
harmonics are interesting, the higher harmonics excited
in the multiple-phonon processes are usually small in
comparison with fundamental ones (less than 5%).
Consequently, it may be more instructive to analyze the
mutual influence of the initial wave components in the
process of frequency mixing. In Fig. 6, we illustrate
the dependence of the amplitude of one wave component
on the amplitude of the other one at different distances
from the boundary. A careful examination of the results
in Fig. 6 leads to the conclusion that at short propaga-
tion distances (x = 0.05) the increase in the amplitude of
either the w-component (4;) or the 2w-component (4,)
generally induces additional absorption (0(Z,/4:)/
04, <0, a(Zl/Al)/6A2 <0, a(Zz/Az)/aAz < 0), with 2172
defined in Eq. (10)). Only the dependence of the 2w-wave
amplitude on the amplitude of the w-wave exhibits a
regime of the induced transparency (0(Z,/A42)/04; > 0)
in the neighborhood of 4; ~ 1.5 (Fig. 6(b)). At larger
propagation distances this induced transparency regime
becomes more pronounced, and intervals of induced
transparency are also predicted for the influence of 2w-
wave on the w-component as well (Fig. 6(c), for x > 0.2
and 4, ~ 1). Moreover, self-induced transparency can be
observed for the 2w-component as function of the 2w-
wave amplitude at sufficiently large distances (Fig. 6(d),
0(Z,/A4,)/04, > 0 for x = 0.3 and 4, <0.5).

The numerical predictions of the existence of induced
transparency effects at short propagation distances
indicate that these effects (at least near the boundary)
are not due to a simple wave spectrum transformation
but must be attributed to the peculiar features of local
non-linear hysteretic absorption in the two-frequency
mixing process. To verify this, we should analyze the
local hysteretic absorption of both w-and 2w-oscilla-
tions at the boundary x = 0. Fortunately, in the case of
s(x =0,7) = 4; cos 2nt + A cosdnr, it is possible to
develop an analytical description of the local hysteretic
absorption in addition to numerical treatment. The
analytical results confirm the effects predicted numeri-
cally in this paper and provide additional insight in the
physics of frequency mixing in materials with hysteretic
quadratic non-linearity [22]. A detailed analysis will be
presented in [23].

4. Conclusions

The numerical framework is developed for the anal-
ysis of plane acoustic wave propagation in non-linear

hysteretic materials. A numerical investigation of the w-
and 2w-wave mixing process in materials with hysteretic
quadratic non-linearity revealed multiple complex phe-
nomena due to hysteresis and memory in the considered
materials.

It was found that for certain combinations of the
w- and 2w- input waves the efficiency of the fourth
harmonic (4w) component generation can exceed the
efficiency of the third harmonic (3w) excitation. In
addition, the transformation of a complex wave into a
simplex wave during non-linear propagation has been
demonstrated.

Peculiar regimes of induced transparency (for which
an increasing amplitude of the o (2w)-wave leads to a
reduction of the absorption of 2w (w)-wave) are pre-
dicted. Also, the existence of a regime of self-induced
transparency (for which in the presence of the w-wave
an increasing amplitude of the 2w-wave induces a
reduction of the absorption of the 2w-wave) has been
demonstrated.

The obtained results are expected to find applications
in the non-destructive evaluation of hysteretic materials
and in seismology.
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