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Abstract—Results of a series of experimental studies of nonlinear acoustic effects in a granular medium are
presented. Different effects observed in the experiments simultaneously testify that the nonlinearity of granular
media is governed by the weakest intergrain contacts. The behavior of the observed dependences suggests that
the distribution function of contact forces strongly increases in the range of forces much smaller than the mean
force value, which is inaccessible for conventional experimental measuring techniques. For shear waves in a
granular medium, the effects of demodulation and second harmonic generation with conversion to longitudinal
waves are studied. These effects are caused by the nonlinear dilatancy of the medium, i.e., by the nonlinear law
of its volume variation in the shear stress field. With the use of shear waves of different polarizations, the anisot-
ropy of the nonlinearity of the medium is demonstrated. The observation of the cross-modulation effect shows
that the nonlinearity-induced modulation components of the probe wave are much more sensitive to weak non-
stationary perturbations of the medium, as compared to the linearly propagating fundamental harmonic. The
nonlinear effects under study offer promise for diagnostic applications in laboratory measurements and in seis-

mic monitoring systems. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The development of seismoacoustic diagnostic tech-
niques and methods of monitoring geophysical media
requires knowledge of the elastic and inelastic, as well
as linear and nonlinear, properties of these media and
understanding of the relation between these properties
and the structure of the medium; i.e., physical models
of such media and the corresponding equations of state
are necessary. As a rule, the chemical compositions and
the physical structures of different kinds of rock are
complex and diversified, which determines the wide
range of acoustic properties of rocks and, hence, a rich
“spectrum” of nonlinear wave processes in them. On
the other hand, the variety of rocks can be separated
into several classes according to their structural similar-
ity, which determines the similarity of their acoustic
properties (even for different chemical compositions).
One such important class of geophysical media
includes granular materials. Their specificity is prima-
rily determined by the nonlinearity of the contacts
between the grains forming a granular medium. This
structural feature of granular media makes their acous-
tic nonlinearity qualitatively different from that of
homogeneous (continuous) amorphous and crystalline
solids, which makes studying the nonlinear propaga-
tion and interaction of elastic waves in granular systems
particularly interesting [1]. To describe and predict the
macroscopic behavior of a granular medium (with one
or another packing) in the field of elastic waves, it is

necessary to know the distribution of the forces f acting
on the intergrain contacts. The results of both theoreti-
cal and experimental studies point to the fact that the
distribution function of the contact forces, P = P(f),
rapidly decreases when f exceeds a certain characteris-
tic force f; related to the strain of the medium [1-7]. On
the other hand, there still are no commonly accepted
models of the distribution P = P(f) for f < f;,. In the lit-
erature, one can find arguments in favor of both a
decrease [4] and an increase [5—7] in P(f) for f < f;,. The
existing experimental techniques [1-4] are insuffi-
ciently sensitive to allow choosing between the theories
describing the distribution of weak forces (f < f).
These techniques are based on the study of the prints of
grains on a carbon paper, the use of a microbalance for
measuring the normal forces acting on individual grains
at the boundary of the medium, and the visualization of
the deformation of grains with the help of optoelastic
effects. All of these methods deal with effects that
become stronger as the force f increases, so that the
contribution of the most-loaded contacts to the result of
measurements is predominant. Hence, it is especially
important to study the aforementioned manifestations
of granular media by experimental methods in which
the response of weak contacts is greater than that of
strong contacts. Such methods can be developed on the
basis of nonlinear acoustic effects, which are sensitive
to the weakest mechanical contacts and defects in the
structure of the medium [8-11]. In contrast to the
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Fig. 1. (a) Experimental setup and (b) a schematic representation of two grain chains of a granular medium with different static
compressions: (A) control dynamometer, (B, C) receiving transducers, (D) longitudinal wave radiator, and (E-G) transverse wave

radiators with different wave polarizations.

known approaches [1-4], nonlinear acoustic methods,
in principle, allow one to obtain information on the dis-
tribution function P = P(f) in the bulk of the medium
(rather than at its boundary) for the range of forces f <
5% 1072 f,.

In this paper, we combine and discuss from a single
point of view the results of a series of experimental
studies of the effects associated with the nonlinear
propagation and interaction of longitudinal (L) and
shear (S) elastic waves in granular media. The intensity
of these effects mainly depends on the nonlinearity of
weak intergrain contacts, which determine the acoustic
nonlinearity of the medium as a whole. We consider
demodulation effects, second harmonic generation for
high-frequency (HF) pulses, and cross-modulation of a
weak (probing) harmonic wave under the effect of an
intense amplitude-modulated pump wave.

2. ELASTIC NONLINEARITY OF A GRANULAR
MEDIUM

Let us discuss the origin of the high sensitivity of
nonlinear acoustic effects in a granular medium to the
presence of weak intergrain contacts. As is known, the
origin of the strong elastic nonlinearity of a granular
medium is the Hertzian nonlinearity of contacts
between the grains [12]. For a medium with uniformly
loaded contacts, this nonlinearity leads to the following
equation of state, i.e., to the dependence ¢ = 6(¢):

o(e) = bnsmH(s), (1)

where 6 and € are the stress and strain, the factor b
depends on the elastic moduli of the grain material, n is

the average number of contacts per grain, and H(g) is
the Heaviside function showing that stress occurs in the
medium only when the contacts are under compression
(0,€>0). An actual granular medium contains contacts
with different loads [1-8], which requires a modifica-
tion of Eq. (1). To reveal the role of different contacts in
acoustic manifestations, we assume that a granular
medium contains only two fractions of contacts with
different static strains. Separating the static (G, €,) and

dynamic (G, €) components of stress and strain for
both fractions, we obtain the following equation from

Eq. (1):

Gy +6 = bn(g,+8) "H(g, + &) &

+bn,(uey + ) "H(ue, + €),

where n; and n, are the average numbers of contacts per
grain for the two fractions and U is the dimensionless
parameter characterizing the weak (| << 1) static strain
of grains of the second fraction compared to that of the
first fraction. Note that the dynamic strain € is the same
for both fractions. This can be explained by considering
the deformation of loaded grain chains shown in Fig. 1.
Assume that, under the effect of dynamic stress, the
chain length /& oscillates around its mean value A, (h =

hy + h , |i~z| < hy). Then, the strain of the chain consist-
ing of N grains with a diameter d will be equal to € =

(Nd —hy— h )/Nd. Consider a chain that has a zero strain
in the absence of acoustic load and assume that this
chain has a number of grains equal to N, = hy/d > 1.
Taking the number of grains in the ith chain to be N; =
Vol. 51 No. 5
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N, + AN,, where AN; < N,, we find that the strain g;
determined as the sum of the static and dynamic com-

ponents is approximately €; = AN/N, + il/ho. Corre-

spondingly, the dynamic strain component € = iz/ho
will be the same for all of the grains belonging to dif-

ferent chains. By contrast, the static strains 88) =

AN/N, (i = 1, 2) are different for different chains,
because AN, # AN,. Note that the difference in the static

strains 88) for these chains can be relatively large even
for AN,/N, < 1. Evidently, the model of the medium
presented above is quasi-one-dimensional, and it
assumes that the more neavily loaded grain chains
relieve other grains from the load. In actual three-
dimensional packings, it is possible to single out simi-
lar, predominantly loaded, quasi-one-dimensional
grain chains, so that, in an actual medium, the dynamic
strain can be considered as identical for all contacts to
a first approximation. Then, at n; ~ n,, we obtain that
the first (more strained) fraction in Eq. (1) carries the
major part of the static load applied to the medium. For

this fraction, the strain EE)I) = AN,/N, approximately
corresponds to the strain of the medium g, Thus, in

terms of the static strains of different contact fractions,
the compliance parameter of the ith fraction is deter-

mined by the ratio: u® = &}’ /e,

For preliminarily compressed contacts and moder-
ate dynamic strains |€| < ug,, Eq. (2) can be expanded

into a Taylor series with coefficients d"G (g,)/d€" .
These coefficients characterize the linear (m = 1) and
nonlinear (m = 2, 3, ...) elastic moduli M,, of the
medium, which determine the velocity of acoustic wave
propagation, the nonlinear correction to it, and the
intensity of nonlinear effects of the mth order:

dm&E . )
My = 20 (14 20 e
de"” ny

Expression (3) shows that the contribution made by the
weak contacts to the linear modulus M, is proportional
to u'2 < 1 and is negligibly small at n, ~ n,. By con-
trast, the contribution of the weak fraction to the non-
linear moduli M,, (m = 2, 3, ...) is proportional to
uG2-m > 1 and, hence, predominates in the presence
of sufficiently small static strains < 10-'-1072. Such
strains correspond to still smaller forces f/f, <3 x 10—
1073 <y, which fall beyond the sensitivity range of the
known experimental techniques [1-4].

From Eq. (3), it follows that, in the case of the
demodulation of weak HF acoustic pulses with an
amplitude €, < g, when the power series expansion of
Eq. (2) is valid, the amplitude € 4, should be quadratic

In g, €4 ~ Mzei. For higher amplitudes (g, > &),
with allowance for the fact that the nonlinearity in
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Eq. (2) is governed by the second term, the amplitude

€ 4o, is determined by the expression: € g, ~ (8"~ H(E)) ~
3/2

€, . This means that the dependence of €4, on g,

should exhibit a transition from the square law to the
3/2-power law. Such a transition testifies that weak con-
tacts with L ~ € /€, < | are present in the medium. Sim-
ilar speculations are valid for the amplitude dependence
of the nonlinear sources producing the second-har-
monic wave in the medium.

3. EXPERIMENTAL SETUP

The experimental setup for studying the nonlinear
acoustic effects in a granular medium is shown in
Fig. 1. The granular medium was composed of glass
beads 2 mm in diameter, which filled a cylindrical con-
tainer with a diameter of 40 cm and a height of 50 cm.
The vertical static load was produced by a rigid piston
and controlled by an electronic dynamometer. The static
stresses and strains could be varied within 10-50 kPa
and (1-5) x 104, respectively. Piezoelectric transducers
were used to excite intense longitudinal and shear
waves in the pulsed or continuous modes (the diameter
of the transducers was about 4 cm). The receivers of
acoustic (strain) waves transmitted through the medium
were piezoelectric transducers with a longitudinal
polarization (of the same type as those used for the
emission of longitudinal waves). The positions and
polarization of acoustic radiators and receivers in the
container are shown in Fig. 1.

4. DEMODULATION OF A HIGH-FREQUENCY
S WAVE WITH A CONVERSION
INTO A LOW-FREQUENCY L WAVE

In the first experiment [13], primary HF pulses (with
a carrier frequency of 30-80 kHz) with longitudinal
and transverse polarizations were excited in the
medium. Because of the strong absorption in the gran-
ular medium, these pulses rapidly decayed (within a
distance of 5 cm). As a result of the demodulation (rec-
tification) of these pulses in the medium because of the
Hertzian nonlinearity of the contacts, secondary low-
frequency (LF) longitudinal pulses (with a characteris-
tic frequency of 4-6 kHz determined by the steepness
of the leading edges of the primary HF pulses) were
generated in the medium and propagated through it. In
hydroacoustics, devices whose operation is based on
this principle are called parametric radiators [14]; in
this case, both primary and secondary waves are
assumed to be longitudinal. The operation of paramet-
ric radiators with a shear pump wave is possible in a
granular medium because of its dilatancy [15, 16], i.e.,
the ability of the granular medium to expand under
shear stresses. This leads to a nonlinear transformation
of the signal frequency with a simultaneous change of
the wave polarization (i.e., an amplitude-modulated HF
S pump wave is transformed into a demodulated LF L.
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Fig. 2. Demodulated signal amplitude as a function of the excitation amplitude of vertically propagating S and L pump waves for

two static pressures.

wave). Generally speaking, the effect of demodulation
of HF acoustic pulses with a conversion from S to L
waves is also possible in a homogeneous medium with
a quadratic elastic nonlinearity [17]. However, because
of the noticeable difference in the propagation veloci-
ties of the primary S wave and the secondary L. wave
(when the dissipation in the medium is relatively
weak), their interaction will be asynchronous and the
amplitude of the demodulated signal will experience
spatial beatings.

In the given experiment, relatively long HF pulses
with a rectangular envelope were emitted, so that the
demodulated LF pulses from the leading and trailing
edges of the primary HF pulses did not overlap and
could be observed separately. With the chosen parame-
ters of HF pulses and pump transducer dimensions, the
demodulation of the signal occurred for a highly direc-
tional primary wave [14]. In this case, the shape of the
demodulated strain pulses corresponded to the second
derivative of the HF pulse envelope with respect to
time. Figure 2 shows examples of the dependences of
the amplitude € 4, of the demodulated pulses on the
amplitude €, of the primary L and S pulses (for different
values of static pressure). The strain level in the pump
wave (in its whole range) remained below the initial
static strain of the medium.

From the amplitude dependences obtained for the
demodulated pulses (Fig. 2), one can see that their main
feature (for both L and S pump pulses) is as follows: for
small amplitudes €, of the primary pulse, a quadratic

dependence of the amplitude €, on €, is observed,
and for large primary pulse amplitudes, this depen-
dence exhibits a transition to a 3/2-power law, which
corresponds to the Hertzian nonlinearity. It should be
stressed that this transition occurs when the strain
amplitude €, is 15-20 dB lower than the static strain &,
As it was noted above, the 3/2-power-law amplitude
dependence is typical of weak “clapping” contacts, and
the predominance of this dependence for €, < g testi-
fies to a considerable growth of the distribution func-
tion P = P(f) in the range of small contact forces
(below several percent of their mean value f;). Here, it
should be taken into account that, in terms of the intro-
duced notations, the following relation is valid for Hert-
zian contacts: f/f, ~ uW¥? < 1. This allows one to relate
the distribution function P = P(f) to the contact strain
distribution n = n(U) or vice versa, by taking into
account the relation P(f)df = n(W)dy, so that, if, e.g.,
n(W) = const, one obtains P(f) ~ f 3. Concerning the
behavior of the function P = P(f), many publications
argue that the distribution of contact forces for f < f; has
a fairly flat plateau P(f) = const [2, 3, 5, 6]. However,
it can be easily shown that such an assumption is incon-
sistent with the observed dependence of €4, on g,

Moreover, even assuming that P(f) ~ f~', which cor-
responds to n(l) = const in Eq. (2), one can see that the
power law P(f) ~ f~/3 (for small f) is insufficient to
obtain the transition from power 2 to power 3/2
observed in the dependence of € 4, 0n €,. A calculation
showed (see Fig. 3a) that, in the case of a uniform dis-
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tribution of contacts in the initial strain n(lL) = const
(i.e., for the distribution of the form P(f) ~ f~'/ in
terms of contact forces), despite the discontinuities
(clapping) of the weak contacts, the amplitude € 4,
almost quadratically depends on €, in the whole range
of the pump amplitude up to its value equal to the mean
static strain of the material, €, ~ €. Indeed, in the case
of the distribution n(u) = const, the number of clapping
contacts increases with increasing €,. As a result, the

14
amplitude of the demodulated pulse grows faster than

3/2

€, and the amplitude dependence of this pulse

remains close to quadratic one as long as €,/g, < 1. It is
only when ¢€,/g, > 1 that almost all contacts begin clap-
ping and the quadratic dependence passes into € 4., ~

8;/2. Thus, the transition from the 2-power law to the

3/2-power law in the amplitude dependence of the
demodulated signal observed in the experiment for
€,/€) < 1 testifies to the presence of a considerable frac-

tion of weak contacts (with i ~ 107! or less). We stress
that, for the realization of the 2 — 3/2 transition in the
power law characterizing the amplitude dependence of
the demodulated signal, it is necessary to have a suffi-
ciently large total number of clapping contacts with
W < g,/g,. Hence, to model the effect of this group of
contacts, it is sufficient to complement the smooth
function n(l) = const with a fraction of weak contacts
concentrated in the region 0 < p <, <€ 1 (see the exam-
ple in Fig. 3b, where we chose 1, = 107!, while the total
number of contacts remained the same as in Fig. 3a). In
this case, the change in the power law is evident as early
as at €,/¢, < 1. A similar pronounced 2 — 3/2 tran-
sition in the power law of the amplitude dependence
(Fig. 3b) can also be obtained when the function n =
n(W) increases smoothly but fairly rapidly, for example,
when n(u) ~ w2 for 0 < 1 < 1. A more detailed recon-
struction of the function n = n(W) for p < 1 is difficult
because of the integral character of its manifestation,
but the pronounced 2 — 3/2 power-law transition
observed at €, ~ 107'g, testifies that the growth of the
contact force distribution function in the region of
flfo €1 is substantial and allows one to estimate the
fraction of the weak contacts belonging to this region.
Note that, for the predicted 2 — 3/2 transition to agree
with experimental results, the characteristic value [,
(below which a considerable part of weak contacts is
concentrated and the distribution function exhibits a
sharp growth) should be not too small. Otherwise, for
example, at |1, = 1072, the 2 — 3/2 transition would be
observed at a much smaller value of g, than that
obtained from the experiment.

Studying the polarization of the demodulated LF
pulses, we found that it was longitudinal for both longi-
tudinal and transverse polarizations of the HF pump
wave. In addition, the propagation velocity of these
pulses, which was determined from the arrival time,
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Fig. 3. Demodulated signal level € 4, (circles) modeled as
a function of pump amplitude &, for different contact com-
pression distribution functions n(l) (squares): (a) n(l) in
the form of a flat plateau, n() = const, for 0 < pu < 1; (b) n(W)
in the form of a plateau with an additional weak contact
fraction containing about 50% of the total contact number
in the region 0 < u <y = 107", The value of 0 dB on the
abscissa axis corresponds to the static strain of contacts
with |l = 1, i.e., to the initial static strain of the medium.

was also close to the propagation velocity of the L
wave. Figure 4 shows the shapes of the LF pulses for
two different frequencies of the S pump wave. When
the frequency of the S pump wave was reduced, the
decrease in its attenuation caused an increase in the
length of the nonlinear interaction region, where the
nonlinear source propagated with the velocity of the S
wave. This caused a noticeable additional delay of the
demodulated pulses and an increase in their duration,
which was not observed in the case of L pump pulses.

As noted above, the conversion of a shear wave into
a demodulated longitudinal wave occurs owing to the
dilatancy phenomenon (an increase in the volume of the
medium under the effect of a shear). Therefore, the
dependence of the demodulated pulse amplitude € 4.,
on the shear pump amplitude €, provides the informa-
tion on the character of the dynamic (i.e., caused by the
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Fig. 4. Examples of the shapes of the received demodulated
pulses for the longitudinal mode and two frequencies of the
shear pump wave. For a pump frequency of 30 kHz, the
additional delay in the first maxima is 26 £ 1 us and the
pulse broadening (between the extrema) is 14 = 1 us, as
compared to the case of a pump frequency of 80 kHz.

shear acoustic wave) dilatancy of the medium. The
classical dilatancy of a granular medium (according to
Reynolds) can be qualitatively understood from kine-
matic considerations [15] as the combination of slip
and rotation of the initially closely-packed grains with
respect to each other, which leads to an increase in the
volume of the medium. Both the kinematics of incom-
pressible grains [15, 16] and the linearized hyperplas-
ticity equations [18] predict a volume expansion of a
granular medium in direct proportion to the shear stress
amplitude. Such a dilatancy law leads to a linear depen-
dence of € 4, On €, (note that the stress and strain in an
acoustic wave are proportional to each other in the first
approximation). However, at small amplitudes, the
experimental dependence of €4, on €, is quadratic
and, as the pump amplitude increased (up to €, ~ &, ~
(1-5) x 10, passed to the 3/2-power law, which cor-
responds to the nonlinearity of clapping Hertzian con-
tacts. Thus, in the presence of small (acoustic) strains,
the dilatancy of a granular medium noticeably mani-
fests itself and is primarily related to the compressibil-
ity of the intergrain contacts rather than to the kine-
matic effects of a repacking of grains.

The effect of demodulation of shear waves with dif-
ferent polarizations can also be used for determining
the anisotropy of the contact nonlinearity of the granu-
lar medium and for revealing the force chains prelimi-
narily oriented along the static stress in the medium.
Indeed, since the contact nonlinearity is inversely pro-
portional to the static strain (Eq. (3)), a medium with an
anisotropy of contact loads should have different non-
linearities for shear waves of different polarizations.
Figure 5 shows examples of the amplitude dependences
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propagation with (V) vertical and (H) horizontal polariza-
tions (the pressure on the medium is 64 kPa). The character-
istic amplitudes corresponding to the 2 — 3/2 power
transition are indicated by arrows.

of demodulated pulses originating from identical hori-
zontally directed S pump radiators with vertical (V) and
horizontal (H) polarizations. From these dependences,
one can see that, first, in the case of an H-polarized
pumping, the demodulated pulse amplitude is approxi-
mately 10 dB higher than that in the case of the V-polar-
ized pumping; second, the transition to clapping con-
tacts (2 — 3/2) for H-polarized pumping is observed at
amplitudes 7-12 dB lower than that for V-polarized
pumping. These facts testify that the nonlinear elastic
parameters of a granular medium are different for the
H- and V-polarized shear pump waves; i.e., an anisot-
ropy of nonlinearity occurs in the medium, because the
horizontal contacts are loaded less than the vertical
ones. In connection with this, we note that the propaga-
tion of an HF harmonic S pump wave with a circular
polarization of frequency Q2 in such a medium may be
accompanied by the effect of generation of LF L waves
with frequencies 2kQ2, where k = 1, 2, .... The ampli-
tude dependences and the amplitude ratios of these
waves characterize the dynamic dilatancy law and the
anisotropy of the acoustic nonlinearity of a granular
medium.

5. SECOND HARMONIC GENERATION
FOR AN L WAVE UNDER AN S PUMP WAVE

The second harmonic generation is a classical non-
linear effect that is widely used, for example, in optics
for the radiation frequency conversion and in nonlinear
acoustics for nondestructive testing of materials. The
efficiency of the conversion of the fundamental har-
monic to the second one depends on the nonlinear
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parameters and dispersion of the medium. The latter
determines the possibilities for a synchronous accumu-
lation of the nonlinear effect. In dispersive media, the
phase velocities of waves with frequencies ® and 2®
differ from each other, and the dependence of the sec-
ond harmonic amplitude on distance exhibits oscilla-
tions (beatings). For acoustic waves, the dispersion is
usually weak and only manifests itself in certain spe-
cific cases, for example, in acoustic waveguides [19].
Below, we describe the observation of such beatings for
the second harmonic generation in a granular medium
[20]; however, these beatings are characterized by some
distinctive features. First, the lack of synchronism
between the primary pump wave and the second har-
monic is in this case related not to the dispersion of a
single type of waves but to the velocity difference aris-
ing with the nonlinear conversion of the S wave of fre-
quency o into the L wave of frequency 2®. (In homo-
geneous solids, such a process is virtually unobservable
because of the large difference between the longitudi-
nal and shear wave velocities and because of the small
value of the nonlinear parameter.) Second, beatings of
the second harmonic amplitude were observed not with
an increase in distance but with an increase in the
amplitude of the primary S wave, which is related to the
nonlinear transformation in the wave interaction
region.

In the experiment, the frequency of the horizontally
propagating S pump wave was f = 5.12 kHz (the wave-
length was A = 4 cm), and its polarization could be
either vertical or horizontal. The distance from the radi-
ating transducers to the receiver was R = 16 cm. For a
transducer with a radius of a = 2 cm, the diffraction
length was L, ~ Ta?/A ~ 3 cm, so that the second har-
monic generation mainly occurred in the region of the
spherical divergence of the pump wave. Here, as in the
case of demodulation, the generation of the second har-
monic for the S wave is accompanied by a conversion
to the L wave.

Figure 6 shows examples of the observed depen-
dences of the second harmonic amplitudes received in
the longitudinal mode on the amplitudes of a longitudi-
nal pump wave and a V-polarized shear pump wave (at
a static pressure of 41 kPa). From Fig. 6a, one can see
that, in the amplitude dependence obtained for a longi-
tudinal pump wave, beatings are absent and the behav-
ior of the second harmonic amplitude is similar to the
behavior of the amplitude of a demodulated pulse (see
Fig. 2); i.e.,, a 2 — 3/2 transition is observed in the
power-law dependence. For the shear pumping case
(Fig. 6b), the behavior of the second harmonic ampli-
tude is qualitatively different: instead of the monotonic
2 — 3/2 transition, the power law exhibits pro-
nounced beatings. In Fig. 6, the level of 0 dB on the
abscissa axis corresponds to the maximum strain
amplitude of the pump wave €, = 1.4 X 107, which is
more than an order of magnitude smaller than the static
strain of the medium (2.4 x 10~ at a static pressure of
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Fig. 6. Examples of the second harmonic level, measured for
the longitudinal mode, as a function of the amplitude of the
horizontally propagating (a) L pump wave and (b) V-polar-
ized S pump wave. The straight lines represent the square
power law and the 3/2 power law (the powers are indicated
near the lines).

41 kPa). As the static pressure increases, the position of
the first minimum of the second harmonic amplitude
(indicated by the arrow in Fig. 6b) is shifted toward
higher pump amplitudes.

As in the demodulation experiments described
above, the use of shear pump waves of different polar-
ization made it possible to observe the effect of anisot-
ropy of the medium by comparing the dependences of
the second harmonic amplitude on the amplitudes of
horizontally propagating H- and V-polarized S pump
waves. The comparison of these dependences showed
that, under the same static pressure, for the H- polarized
wave, the second harmonic level was higher (typically,
by 5-10 dB) and the beatings began at lower (also by
5-10 dB) pump amplitudes, as compared to those for
the V-polarized wave. This result agrees well with anal-
ogous observations for the demodulation effect.

The beatings observed with varying amplitude of
the S pump wave were related to the fact that, in the
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Fig. 7. (a) Schematic representation of the clapping (Q3/,) and square-law (Q,) modes of nonlinear sources in the second harmonic
generation region and (b) dependences of the second harmonic amplitude on the pump amplitude modeled on the basis of integral
(6) for different values of the compliance parameter | of the additional weak contact fraction.

region of second harmonic generation, an increase in
the pump amplitude was accompanied by a change in
the conditions of wave interaction. As we have noted
above, the contribution of the unloaded contact fraction
to the demodulated signal is predominant, and part of
the weak contacts may pass to the clapping mode and
make a contribution to the second harmonic so that this
contribution proves to be comparable to (or even
greater than) the contribution from the contacts that
remain closed during the whole period of pump oscilla-
tion.

The process of the second harmonic generation in
the propagation of a longitudinal harmonic pump wave
is described by the integral [14]

explikq(r—-r")] 5 |
ar',
Ir—r|

o"(r) = Rez-[or) @

where 6" and k,, are the stress and the wave vector of
the secondary wave and the integration is performed
over the volume occupied by the nonlinear sources
Q') = O(x', ¥, Z') produced by the primary pump
wave; r represents the coordinates of the observation
point. (For a medium with a quadratic nonlinearity,
O(r') ~ Re[(g,/2)exp(—ior + ikr')]%.) A similar integral
can describe the generation of an L wave of frequency
2m in the field of an intense S wave of frequency ® in a
granular medium. However, in this case, it is necessary
to take into account the velocity difference between the
S and L waves and the specific feature of the granular
medium, namely, the 2 — 3/2 transition in the power
law characterizing its nonlinearity.

From the study of the demodulation effect, it was
found that the nonlinearity of a granular medium is qua-
dratic only for small amplitudes €, of the pump wave,

as long as € /¢, < W; in this case, the source Q in Eq. (4)

is also quadratic: Q = Q, ~ (3/16)(}180)’1/28[2,. As the
pump amplitude increases up to €,/g, > |, the Hertzian
nonlinearity becomes clapping, which leads to the fol-
lowing expression for the source: Q = Q5 ~ (3/4m) 812,.
At some distance L, from the pump radiator, the ampli-
tudes of these sources coincide at the amplitude value
Ef,r ~ 16pey/m?, which can be considered as the charac-

teristic pump amplitude corresponding to the 2 — 3/2
transition in the power law. In this approximation,
Eq. (4) falls into two integrals corresponding to the
square-law and clapping (3/2-power-law) modes of the
sources:

exp[lkrad(r r )]
Ir—r|

Ezw(r) Re— { J 0Os)

r<L.

)

J' Qzexp lkrad(r r)]d r }’

-
r>L.,

where €%¢ is the strain in the wave of frequency 2.
Schematically, these subregions are shown in Fig. 7a.
At a small pump amplitude €, the region of clapping
sources can still be absent. As the pump amplitude
grows, such a region appears near the transducer and
then moves into the depth of the medium, so that the
distance L. is determined by the condition of equal
amplitudes of the sources in the closed and clapping
modes: €,(r = L) = 16ugy/n’. From this equality and
from the condition that the pump wave be spherically
divergent (i.e., € (r) =~ g,(r = 0)L,/r) in the major part of
the interaction region, we obtain L.,= nzLdsp(O)/(16p£0)
Performing the integration across the pumping beam
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and assuming that |r' — r| ~ r in the denominator of inte-
gral (5), we arrive at the expression

XPUAKL) ;.
(2)

. 8;/2(0)1_[_,

®(R)~R
e ke nJL_dLJ
(6)

2 R
£,(0) exp(iAk?), }
ey Ef

z
where Ak = k — k4.
In Fig. 7b, integral (6) is represented as a function of
the pump amplitude €, for several values of the param-

eter L characterizing the degree of unloading of the
weak contacts and for other parameters corresponding
to the experimental conditions (the S and L. wave veloc-
ities cg = 225 m/s and ¢; = 335 m/s, respectively; Ak =

L,

95 m™). The amplitude €," (0) corresponding to the

level of 0 dB was chosen to be an order of magnitude
smaller than the static strain €. The behavior of the sec-
ond harmonic amplitude shown in Fig. 7b for the same
pump amplitude range as in the experiment strongly
depends on the parameter U characterizing the reduced
strain of the weak contact fraction. Specifically, the ini-
tial quadratic growth and the subsequent harmonic
amplitude oscillations corresponding to i ~ 1072 in the
calculated plot are close to the behavior observed in the
experiment.

The difference in the effective interaction lengths
L corresponding to the adjacent extrema in the sec-
ond-harmonic amplitude dependence can be estimated
as Az = w/Ak ~ 3.3 cm. As the pump amplitude grows,
the boundary L. of the 2 — 3/2 transition in the
power law describing the amplitude dependence of the
demodulated signal is gradually displaced. Hence, at an
observation distance of R ~ 16 cm, the maximum num-
ber of possible extrema can be estimated as R/Az ~4-5,
which agrees well with the experiment. The following
increase in the effective length of the antenna array will
cause no new extrema, because, within the entire dis-
tance from the emitter to the receiver, the nonlinear
sources will mainly be in the clapping mode corre-

sponding to the harmonic amplitude dependence ~£Z/2 .
In Fig. 7b, such a situation is illustrated by the curve cor-
responding to the choice of i = 107 On the other hand,
if the parameter W is too large (L = 107" in Fig. 7b), in the
given range of pump amplitudes, the number of clap-
ping contacts will be small and their contribution (and,
hence, the change in the effective length of the array)
will be too small, so that the beatings will be absent and
the harmonic amplitude dependence will be quadratic.
Note that, to simplify the model calculations, we used a
simple approximation of the distribution function (the
same parameter | for all unloaded contacts), which
already allowed us to illustrate the role of unloaded
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contacts in the beating effect. Thus, the nonmonotonic
behavior of the second harmonic generated by a shear
pump wave proves to be a sensitive indicator of the
presence of weak contacts in a granular medium.

6. CROSS-MODULATION EFFECT
AND ITS SENSITIVITY TO STRUCTURAL
PERTURBATIONS OF THE GRANULAR MEDIUM

In addition to the aforementioned effects related to
nonlinear frequency transformations toward higher and
lower frequencies, we also performed experimental
observations of the nonlinear acoustic response of a
granular medium to transient processes induced by
short pulsed actions with the use of the less common
effect of amplitude modulation transfer from an intense
amplitude-modulated pump wave to a probe wave of
another frequency [11]. This effect is an acoustical ana-
log of the Luxemburg—Gorki effect [21] observed in the
radio wave interaction in the ionosphere. A similar
effect of amplitude modulation of a weak seismoacous-
tic wave under the effect of an intense amplitude-mod-
ulated wave was observed in sandy soil [22]. In the
model experiments described below, the effects in a
granular medium were studied using an experimental
setup similar to that shown in Fig. 1. A more detailed
description of the experimental technique and the
experimental results can be found in [23, 24].

In addition to the results considered in [23, 24], we
present another typical example illustrating the great
difference between the sensitivity of the fundamental
component of the probe wave to the structure of the
medium and the corresponding sensitivity of the first-
and second-order cross-modulation components aris-
ing in the course of its propagation. In the experiment,
a monochromatic probe wave with a frequency of
10 kHz and a 100% amplitude-modulated pump wave
with a carrier frequency of 7 kHz and a modulation fre-
quency of 3040 Hz were emitted into the medium.
These waves could be either parallel or perpendicular to
each other. Their mutual orientation only weakly
affected the efficiency of the modulation transfer,
because, in contrast to the harmonic generation, the
induced changes in the absorption in the medium were
important for this effect, so that no spatial synchronism
of the interacting waves was necessary. In the experi-
ment, the spectra of the probe wave were recorded at
1-s intervals, which allowed us to compare the varia-
tions of the fundamental harmonic and the modulation
lobes in time. An additional vibrator immersed in the
medium generated short (1-10 ms) shock pulses, which
produced perturbations in the medium. Figure 8 shows
the time dependences of the amplitude of the funda-
mental (with the carrier frequency) component of the
probe wave and the amplitudes of the induced first- and
second-order combination components. In the course
of these measurements, several pulses perturbing the
medium were emitted (the instants of the pulse genera-
tion are indicated by arrows). Figure 8 demonstrates the
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Fig. 8. Time dependences (at a step of 1 s) of the fundamental harmonic amplitude of the probe wave (marked with number 0) and
of its right-hand and left-hand first- and second-order modulation lobes (marked with numbers +1 and +2). The arrows indicate the
instants of “seismic events.” The inset shows examples of the spectra of the 100% amplitude-modulated pump wave and the probe
wave with induced modulation after their transmission through the medium.

difference in the sensitivity of the level variations for
the modulation components and the fundamental har-
monic: for the latter, these variations are very small. An
important feature of the variations induced by the shock
pulses in the cross-modulation components of the
probe wave is their transient nature with a pronounced
slow dynamics. The dynamics of these variations is
determined by the gradual structural relaxation of the
material within 1-70 s after the perturbing pulse (see
Fig. 8). The inset to Fig. 8 shows the spectra of the
pump and probe waves. Note that the higher modula-
tion components appeared in the spectrum of the pump
wave as a result of its propagation through the medium,
and the shape of the spectrum of the probe wave does
not reproduce the shape of the pump spectrum. For
example, in the probe wave spectrum, the level of the
second-order components may in some cases be equal
to the level of the first-order components or even
exceed it (as in Fig. 8 after the first perturbing pulse).
Thus, the observed high sensitivity of the cross-modu-
lation effects to small structural changes in the granular
medium and, especially, to the structural relaxation
processes can be effectively used, along with other non-
linear effects, for nondestructive testing of the state of
a granular medium.

CONCLUSIONS

The results of the experimental studies described
above testify that the nonlinear effects occurring in a
granular medium are selectively sensitive to the pres-
ence of weak contacts (in contrast to linear elastic char-
acteristics, for which the contribution of strong contacts
predominates). The transition from the square law to
the 3/2-power law in the amplitude dependence of the

demodulated pulse and the beatings of the second har-
monic with increasing amplitude of the primary shear
wave suggest that the medium contains a considerable
fraction of weak contacts (according to estimates, 60—
70% of the total number of contacts). These nonlinear
effects observed for shear waves made it possible to
investigate the law of the dynamic dilatancy using the
dependence of the amplitude of the demodulated signal
on the shear pump amplitude. The characteristic fea-
tures of the effects under study testify that the distribu-
tion function of intergrain contact forces noticeably
increases in the region of small forces, much smaller
than the mean contact force. For grains of irregular
shape, such an increase near a zero force value is still
more pronounced, because, for example, in dry sand,
the square-law part of the amplitude dependence of the
demodulated signal is practically absent [23]. These
conclusions agree qualitatively with the recent results
of the three-dimensional modeling of intergrain forces
on the basis of the molecular dynamics approach [7].
For unloaded packings with allowance for friction, the
modeling revealed a pronounced growth of the function
P = P(f) for f< 107'f;.. The results obtained should stim-
ulate further theoretical modeling and experimental
investigations of the elastic and inelastic behavior of
granular materials.

The observed high sensitivity of nonlinear effects to
the structure of a granular medium suggests good pros-
pects for diagnostic applications of these effects in lab-
oratory conditions and in seismic monitoring systems
(where, in particular, the use of the acoustical analog of
the Luxemburg—Gorki cross-modulation effect, which
consists in the amplitude modulation transfer from an
intense pump wave to a probe harmonic wave, may be
of special interest).
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