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Abstract

Self-action and effects mutually induced by oscillations interacting in hysteretic media are investigated analytically and numer-
ically. Special attention is paid to non-simplex processes for which presence of intermediate extrema results in appearance of minor
nested loops inside the main hysteretic stress—strain loop. Non-simplex regimes are typical of interaction of excitations having dif-
ferent frequencies and amplitudes, but comparable strain rates. It is found that, due to transition between the regimes, frequency and
amplitude dependencies of the variations in elasticity and dissipation induced by one wave for another one may become non-monot-
onous. Either additional dissipation or induced transparency may occur in different regimes. The results obtained are important for
correct interpretation of experimental data on nonlinear acoustic interactions in rocks and many other microstructured (mesoscopic)

solids that are known to exhibit elastic hysteresis and memory properties.
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1. Introduction

Experimental studies of nonlinear self- and inter-ac-
tion of elastic waves in a wide class of solids (rocks,
polycrystalline metals, grainy materials, etc.) indicate
manifestations of hysteresis in the stress—strain relation-
ship. For large enough strains (from 107-10~* down to
>107°), direct observations of quasi-static hysteretic
loops have been known over 30-40 years [1-5]. For typ-
ical acoustic strains <107, such direct observations are
not yet available, so that the nonlinear stress—strain rela-
tionship has to be reconstructed via comparison of the-
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oretical predictions based on an assumed model(s) with
experiments [6—13], although such a reconstruction often
is not unique.

For example, in rocks and other microinhomoge-
neous solids, unlike homogeneous solids possessing
weak power-type atomic nonlinearity [14], an important
role may belong to manifestations of ‘“‘non-classical”
(and often non-analytical) contact nonlinearity [15-22],
together with nonlinear-dissipative [13,16] and slow
dynamics phenomena [23,24]. There is also general con-
sensus that, in these solids, the quasi-static hysteresis
may be responsible for such effects as nonlinear shift
in resonance frequencies accompanied by nonlinear dis-
sipation and higher harmonic generation in resonant-
bar experiments at sinusoidal excitation [6-12,25-27].
The recent trend is related to studies of interactions of
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waves of different frequencies in hysteretic materials
[13,21,24,28-35]. The main difficulty in the theoretical
description of these effects is related not to the very fact
of existence of hysteretic loops, but rather to the prop-
erty of memory [3,4,36] in a sense that the material re-
sponse may essentially depend on the history of its
deformation. This is especially important for compara-
ble strain rates of interacting excitations, for which hys-
teretic curves may exhibit multiple nested loops that
depend in a rather complex manner on previous extrema
in the material loading.

For strong enough difference in the strain amplitudes
and rates of the interacting waves, there are no nested
hysteretic loops (such processes are called simplex). This
case can be treated analytically using the perturbation
method. In such a way action of a stronger wave on an-
other weaker one is considered in paper [32]. The oppo-
site influence of a weaker excitation on the stronger one
was analyzed in [33]. Recently, an example of a non-sim-
plex interaction of co-propagating waves at fundamen-
tal and double-frequency harmonics was considered
for quadratic hysteresis with odd symmetry [34,35]. It
was found, in particular, that these waves can mutually
induce either additional absorption (darkening) or trans-
parency depending on the relative phases and ampli-
tudes.

It should be noted that any hysteretic nonlinearity
implies a nonlinear elastic part, which allows for effects
of synchronous scattering like in the case of purely elas-
tic nonlinearity. In order to delineate the role of hyster-
esis, we consider below the interaction of elastic
excitations in a volume of a hysteretic material with
dimensions smaller than the lengths of interacting
waves. This condition excludes spatial accumulation of
the scattering effects (taken into account in [32]), but
keeps the manifestations of local nonlinear-hysteretic
properties of the material. We focus on the effects of in-
duced variations of dissipation/transparency and varia-
tions in elasticity for one wave under the action of
another wave. Special attention will be paid to features
of non-simplex interaction regimes, which practically
have not been studied before either analytically or
numerically.

2. Model of the hysteretic nonlinearity

Following the terminology of [36] we use as a basis
for the analysis the so-called Preisach—Krasnoselsky ap-
proach to the description of hysteresis [37,38], which we
shall call below the PKM-formalism acknowledging its
further development made by Mayergoyz [39]. Accord-
ing to PKM-approach we assume that nonlinear hyster-
etic contribution to stress oy can be presented as a linear
superposition of the elementary contributions ¢, from
individual hysteretic mechanical elements (cracks,

microcontact interfaces, dislocations, etc.) embedded
into the elastic matrix material:

ou(s) =Y ou. (1)

Here s is the total material strain (in which the contribu-
tion of the linear elastic matrix strongly dominates). The
individual elements in the PKM-formalism are assumed
to switch their stress at certain threshold values of strain
So (“opening”) and s, (“closing’) as shown in Fig. 1 (the
plot at the inset). Eq. (1) formally corresponds to the ac-
tion of the non-interacting mechanical elements in paral-
lel (summation of forces). Note that the hysteretic
stress—strain relationship can also be achieved consider-
ing a linear superposition of the elementary volume
changes (strains) exhibited by the individual elements
at certain threshold values of the applied stresses
[8,11]. The distribution of the elements over their con-
trolling parameters in terms of either stresses (o,,0.)
or strains (so,5.), as in Fig. 1, is called the distribution
in the corresponding PKM-space. It was argued in
paper [34] that these representations are equivalent
when the hysteretic elements, embedded into the near-
Hookean (linear) matrix material, induce a small hyster-
etic correction to the equation of state.

Let us, as is conventionally done [8,36,40,41], consider
for individual mesoscopic elements the simplest hyster-
etic function of a rectangular shape, for which we assume
identical variation of threshold stresses Ac = o, — 0, and
different threshold strains s, and s, (see inset in Fig. 1).
We also admit the conventionally used assumption on
instantaneous switching [8,11,39,40]. In order to evaluate
the hysteretic correction to the elastic modulus (equal to
the derivative dgy /0s = > ,,00.,/0s) one needs to differ-
entiate the curve plotted in the inset in Fig. 1:

aUM
a—:AJ@(s,so,sc), Ao =06, — g, >0, (2)
A
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b Y
i ope:n s
\ State s
S So
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Fig. 1. Hysteretic model of an individual mesoscopic element M (inset)
and the PKM-plane (s,,s.). Each element is parameterized by values of
respective strains s,,s. corresponding to the element opening and
closing, and the variation in the individual stress Ao = 6. — 0.
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ds

O(s —so), if
(s — 5o) if 3,

> 0, in closed state,
@(S,SO,SC) = -

.. 0 .
o(s —sc), if a—j < 0, in open state,

(3)
here 0s/0t is the time-derivative of strain. In order to
come to the stress—strain relationship, elementary
expressions (2) and (3) for the elastic moduli should
be further integrated over strain and summed for the
chosen distribution f{s.,s,) of the elements in
the PKM-space. Since by definition s, < s, (see Fig. 1),
the hysteretic elements at the plane (s, s,) can be located
only below the diagonal s. = s,. Different material pro-
perties may be accounted for by using different f(s.,s,),
for which f(s.,s,)ds.ds, is the number (per unit physical
volume) of the elements with control parameters belong-
ing to intervals [s.,s. + ds.] and [s,, s, + ds,]. Examples
of reconstruction of inhomogeneous distributions of
the hysteretic elements in order to describe particular
forms of hysteretic stress—strain experimental protocols
are given e.g. in [42]. However, typically such distribu-
tions manifest noticeable inhomogeneity at quite large
strains, of the order of 10~* and more, whereas in acous-
tics of solids typical strains are orders of magnitude
smaller, so that for these small strains the distribution
function could be approximated by a constant,
f(Se,80) = fo = const. In such a case it was analytically
shown in [43] that, for a simplex quasi-periodical strain-
ing with one maximum s,,,, and one minimum $,;, over
a loading cycle, the hysteretic correction oy in the equa-
tion of state is of an odd-type and is quadratic in strain:

huE )
O-H(Smax) + L (S - Smax)27 a_j < 07
huE(s — min ?
OH = OH (Smin) - % == UH(Smax)
hwE 0s

2 2
P [(S - Smm) - (Smax - Smln) ]7 6_t > 0.

(4)
Here E is the linear elastic modulus (determined by the
matrix material), and &y = fyAd/E is the characteristic
nondimensional parameter of the hysteretic quadratic
nonlinearity. In Eqgs. (4) the background level of stress
is not specified. Indeed, this constant does not affect
the shape of the hysteresis loop, which determines phys-
ical manifestations of the hysteresis (that is harmonic
amplitudes, energy dissipation proportional to the loop
area in the o(s) plane, variations of the elastic modulus,
etc.). It is convenient to consider the hysteretic stress in
the normalized form oy/(hyE) — 6y, which we shall
use below omitting the tilde. Strain s can be conveniently
normalized to some characteristic strain sy, beyond
which distribution f{s.,s,) cannot be considered as con-
stant, S = s/s.,, so that below we limit ourselves to small
enough strains S < 1 for which f(s, s,) =~ fo.

For a non-simplex loading with intermediate extrema
the boundary between open and closed elements at the
PKM-plane becomes step-wise (Fig. 1 demonstrates
one intermediate step-wise “‘switching front”, bold seg-
ment AB). Such intermediate steps correspond to
branches of minor nested loops inside a bigger loop at
the stress—strain plane. Much like a simplex loop the
branches of the minor loops are described by Egs. (4),
but smax and spin have the meaning of the respective
intermediate extrema. Further, at the moment when a
minor step (bold segment 4B in Fig. 1) is absorbed by
the bigger step (segment CD in Fig. 1) the “‘switching
segment” experiences instantaneous elongation (from
length AB to length CD as is clear from Fig. 1). The
minor loop at this moment returns to the previous-order
hysteresis branch started from the corresponding previ-
ous extremum (in other words, the system ‘“memory”
about the intermediate maximum, denoted as point E
in Fig. 1, is “wiped out” and the further evolution is
determined by the higher previous maximum denoted
as point F). The larger branch is again described by
Eqgs. (4) with the extrema appropriately “switched” to
the previous values. This switching between the hyster-
etic branches corresponds to the effect of “memory”
for non-simplex processes, which in more details is dis-
cussed in [34]. Based on the described principle of
matching minor and major hysteretic branches of the
form given by Egs. (4), a numerical code was developed
to construct hysteretic stress—strain dependencies for
arbitrarily complex strain histories. The code determines
all the extrema occurring during the given material
straining and constructs the corresponding hysteretic
stress—strain dependencies keeping track of the memory
effects and nested loops as discussed above (some exam-
ples are given in Figs. 2 and 3). Experimental observa-
tions of complex hysteresis loops of such a type can be
found, for example, in [3,42,44].

A higher-frequency oscillation with strain amplitude
Apyr may create its own smaller loops only when its
strain-rate wyrAgr becomes higher than the strain-rate
wrpArp in the lower-frequency oscillation at some
phases of the period of the slower oscillation, as was ar-
gued in [29]. Complex character of straining at high fre-
quency ratio wygp/opr > 1 may occur even for Ayp/
Arr < 1, the exact threshold being dependent on the
mutual phasing of the oscillations. Indeed, the largest
strain-rate amplitude wypAyr of the fast oscillation is
required in order to exceed the strain rate of the low-fre-
quency oscillation in the vicinity of its strain-rate extre-
ma wp A . At this unfavourable for creation of nested
loops phasing, the threshold condition is Axg > (wr g/
wyrp)ALg. However, in the special case of creation of
nested loops near zeros of the strain-rate in the slow
oscillation, much smaller amplitude Ayr can suffice. In
this case the amplitude of strain rate wypdyp In
the high-frequency excitation should be compared
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with a characteristic strain rate ~ wgkLd/d¢(dS1g/dt) =
(0} /our)ALr attainable by the low-frequency excita-
tion near its strain-rate zeros during the period of the
high-frequency oscillation. Thus the threshold condition
for this case is much softer, Ay > (0 F/our)*ALr (see
also [33]). Analytically nested loops can be described
in ample details only for simple special cases [33-35].
For arbitrary loading their forms will be found numeri-
cally and then used for evaluation of hysteresis-induced
effects via the procedure described below.

3. Method of investigation of the interaction

Here we present a few general relations describing in
a unified form the effects of self-action as well as the
influence of one oscillation on the dissipation and elas-
ticity for another oscillation. Let us consider the mate-
rial straining of the form

S =Acos0+acos(nl+ ¢)=S,+ S, (5)

where 0 = wt is the nondimensional time and #» is the
ratio of the frequencies of the two oscillations. We shall
limit ourselves to rational n in order to be able to con-
sider the process as periodical and to avoid long-time
averaging for incommensurable frequencies. However,
we shall consider arbitrary amplitude ratios between
the interacting waves. In case of strongly different ampli-
tudes we shall call the stronger and the weaker waves
“pump” and “probe” respectively.

For the hysteresis-induced losses AW, and AW,
per one oscillation period (for the waves at frequen-
cies w and nw, respectively) the following expressions
have been derived (see Appendix A and also Refs.
[33,34)):

I/n, n<1,
AWA:KI%UH(Q)(]’SA(H)’ Klz{l’/n Z>17
(6)
1 > 1
AWg :Kz%o‘l{(e)dsa(g), K2 = { /}’l, n 5
1, n<l.
()

The integration in Egs. (6) and (7) is performed over the
total period T determined by the oscillation with the
lower frequency:

B {27‘(, for n > 1, ®)
~ \2n/n, forn<1.

Egs. (6) and (7) are valid for arbitrary phases. For the par-
ticular phasing described by Eq. (5), ou(0) =
ou(Adcos 0+ acos(nd + ¢)), dS; = —sin0d0 and dS, =
—nsin(n + ¢)d0 in Egs. (6) and (7). Note that in
the case of only one wave (either ¢ =0, or 4 =0)
the expressions for the losses AW, have the conven-
tional sense of the area of the hysteresis stress—strain loop.

Similar expressions can be obtained for the hystere-
sis-induced variations in the velocities (elastic moduli)
for each of the waves (see Appendix A):

AE K
TA = @ UH(O)SA(O) d()a (9)
AE K I, n>1
= 0)S,(0)dd, K = ’ ’ 10
E na? o1 (0)S.(0)d0, {n, n<l. (10)

Egs. (6)—(10) will be used below for numerical simula-
tions via direct integration of the stress—strain curves
accounting for eventual nested loops. These results will
be compared with analytical treatment for the simplex
type interaction [32-34] and for some particular situa-
tions in complex regimes, which also allowed for analyt-
ical investigation.

4. Induced absorption and transparency for two-wave
interaction in hysteretic materials

Numerical evaluation of Egs. (6)—(10) for excitations
with incommensurable frequencies requires long aver-
aging over intervals much larger than the periods of
beatings of the interacting oscillations. However, main
features can be demonstrated using periodical pro-
cesses (that is using rational parameter n in Eq. (5)),
which requires much smaller computation time. As ar-
gued above, for the odd-type hysteretic nonlinearity,
the higher harmonics generated are of odd orders as
well. Therefore, since for even numbers n in Eq. (5)
the frequencies of the harmonics do not coincide with
frequencies of the initial waves, this ensures that the pre-
dicted mutual influence of the oscillations is essentially
due to the hysteresis rather than due to the direct nonlin-
ear frequency mixing typical of any elastic nonlinearity.
By the same reasons, in order to reliably distinguish for
odd numbers n the effect of the hysteresis and the
frequency-mixing, we have to consider only the influence
of the higher-frequency oscillation upon the lower-
frequency one.

In the sections below we limit ourselves to consider-
ation of the quadratic hysteresis described by Eqgs. (4)
(which correspond to homogeneous density of the
PKM-elements for normalized strains S < 1). The influ-
ence of hysteresis saturation at higher amplitudes is
readily accounted by the suggested simulation procedure
and may essentially modify the results. The discussion of
the revealed saturation effects will be published
elsewhere.

4.1. Interaction of w—2w type

For preliminary testing the numerical code, we start
with a particular mutual phasing ¢ = 0, frequency ratio
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n =2 and the oscillation amplitudes 4 = A;, a= A4, in
Eq. (5):

S =4, cos 0+ 4> cos(20). (11)

For such parameters and for quadratic hysteresis, Egs.
(6) and (7) and Egs. (9) and (10) can be rigorously eval-
uated analytically even for a non-simplex straining by
properly taking into account the amplitude-dependent
displacements of the extrema. Using the calculated en-
ergy losses AW, over the period the resultant dissipation
for each of the waves may be conveniently characterized
by the decrement D; = AW/(2W;) defined via the maxi-
mal accumulated elastic energy W; = Es?/2 in the ith
wave. The conventionally used quality factor thus
equals to Q; = n/D,.

It is convenient to present the final results in normal-
ized form D1’2 = Dl,z/(hHSO), A1,2 = Al,z/SO, and to
choose the characteristic strain amplitude s° the same
as in Egs. (4): s° = s¢,. Note that for a simplex sinusoidal
process with strain amplitude s° the decrement Dgimp
determined by the area of the hysteretic loop is
Dgimp = (4/3)hys®. The respective expressions for the
hysteresis-induced normalized decrements D;, for the
two oscillations in the different regimes have the forms

(see also [34])
4, (1 - 5) :

p > 1 (simplex),

D, = (4/3)
A (1+2p* +1p*), p<1 (complex),
(12)
¢ .
$Ay, p > 1 (simplex),
Dy = (4/3) ’ b 436
A>(1+7p* = p* —3p°), p <1 (complex).
(13)

Here p = A,/4A4,, and p = 1 is the threshold between sim-
plex and complex regimes for the particular phasing
(11). A similar procedure of calculating the integrals
(9) and (10) yields the following expressions for relative
variations AE; »/E in the elastic moduli (which are de-
noted for brevity as DM, , and are also normalized to
the factor Ays° like the decrements Dy )

Ay, p> 1 (simplex),
DM, = Az{n(l +p) +i2+ )1 -p?
f4parccos(p)}/n, p <1 (complex),
(14)
Ay, p>1 (simplex),
pity = | A{r(14+p) +42 (5= 22) VT

—4paI'CCOS(p)} /7, p <1 (complex).

(15)

Fig. 2(a) and (b) demonstrates a perfect agreement be-
tween the numerically calculated and analytically found
nonlinear decrements and the variations in the elastic
moduli for the cosf + cos(20) phasing of the waves,
which are plotted as functions of strain amplitudes
A . Fig. 2(c) shows analogous dependencies on A, for
other characteristic cases of the mutual wave phasing,
for which analytical solutions are not available. The

cosH + cos20 sind + cos20
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N
=
(=]
°
c
<
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1E-5 1E-4 1E-3 0.01
Normalized strain amplitude A,
coso + cos20 sind + cos20 (b)
0.01 4
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=
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c
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Fig. 2. Nonlinear decrements and modulus defect as functions of
amplitudes A4,, for w2 interaction. Insets show nested loops
produced by 2w-wave inside w-wave hysteresis loop. (a) Variable
amplitude A4, at fixed 4, = 0.001. (b) Variable A4, at fixed 4, = 0.001.
Solid lines at (a) and (b) correspond to analytical result Eqs. (12)—(15).
(c) Variable 4, at fixed 4; =0.001 for cosf + sin20 and sind + sin20
phasing. In case (c) unlike case (b) decrements D, , exhibit no minima
in function of A4,.
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plots demonstrate that when one wave is much stronger
than the other, the induced decrement for the weaker
wave is independent on its own amplitude. In this sense
the weak-wave losses induced due to nonlinear interac-
tion with the strong wave resemble linear (e.g. viscous)
losses, and these losses normally increase with increasing
amplitude of the stronger. However, for some phasing
(e.g. the cases shown in Fig. 2(b)) the 2w-wave may in-
duce local minima in the decrements for both waves,
which happens in the complex regime for comparable
amplitudes of the waves. Note that, in contrast to the
dissipation, for the elasticity variations DM, , the inter-
mediate minima do not exist at any phasing. It should be
underlined that the calculated decrements correspond to
the “genuine dissipation”, in other words, this is the
time-averaged irreversible work produced by the
strain-actuators for the respective oscillation (in pres-
ence of another oscillation). These losses are essentially
due to jumping (switching) of the elastic modulus at the
end-points of the hysteretic loops. In contrast, in the
case of purely elastic nonlinearity the elastic energy in
average is conserved inside the material and the two
oscillations produce their work independently in average
(although the energy is periodically redistributed in
reversible way between the fundamental and nonlinear-
ity-induced components). Formally this corresponds to
zero value of integrals (6) and (7) (that is zero area con-
toured by elastically-nonlinear stress—strain curves with-
out splitting over a period).

4.2. Interaction of w-3w type

Similar to the considered above, but quantitatively
even stronger non-monotonous influence on w-wave
can be produced by a 3w-oscillation which is capable
to create nested loops near both extrema of the w-wave.
As a result, the induced local minimum in the decrement
Dy is deeper than that for interaction with 2w-wave as is
illustrated in Fig. 3 (see also the note on odd frequency
ratios in the beginning of Section 4). Moreover, for the
“optimal” phasing (sin—sin type interaction) Fig. 3 dem-
onstrates a local minimum for the variation in the elas-
ticity DM as well. It is interesting to check for arbitrary
mutual phasing whether the phase-averaged induced
transparency for D; may persist or not. Fig. 4 shows
the influence of the phase shift @3 of the interacting
w-3w waves

S = A, cos0+ A, cos(30 + ¢;), (16)

on the decrement D; of the w-wave. The dashed hori-
zontal line shows the reference magnitude of the self-in-
duced nonlinear dissipation for the w-wave. This plot
indicates that the phase region of the increased dissipa-
tion of the w-wave dominates, so that for w—3w interac-
tion the phase-averaged induced transparency cannot be
obtained for w-wave.

sing + sin36
=
[a]
°
c
©
a | —
\.\.\
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1E-3 - o O—0—0—0n_
O O-O.B‘Qoooooo
\I
y
L Y
L}
1E-6 1E-5 1E-4 1E-3 0.01

Normalized strain amplitude A,

Fig. 3. Decrement D; and modulus DM, for w-probe wave with
A, =107 in function of 3w-pump amplitude A5 for the phasing when
the nested loops are created near the w-wave extrema. The analogous
parameters of the 3w-wave are not shown, since they are essentially
distorted by the direct generation of the 3rd harmonic by the w-wave.

4.3. Interaction of w—nw type

Let us discuss now the influence of the difference in
frequencies between the interacting waves. We again as-
sume the probe wave amplitude A4, to be much smaller
than the pump-wave amplitude A4,,. In order to avoid
the masking effect of directly generated odd-harmonics
of the waves we choose even ratios of the frequencies,
as was argued above. Fig. 5(a) presents the hysteresis-in-
duced decrements and variations in the elasticity for
each of the waves as functions of their relative frequency
Wpmlop,. It is important that even for a weak probe
wave (30 times smaller in amplitude than the pump for
Fig. 5(a)) the interaction becomes essentially non-sim-
plex at higher probe-frequency.
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Fig. 4. Dependencies of the induced nonlinear decrement D; and
modulus defect DM, due to interaction with 3w-wave plotted against
the initial phase of the 3w-wave. Strain amplitudes 4, = 107> and
A3=2.6x10"* correspond to the minimum of D; in Fig. 3. The
dashed line shows w-wave decrement in the absence of 3w-wave.



V.Yu. Zaitsev et al. | Ultrasonics 43 (2005) 699-709 705

] cos( u)pmt )+cos(mpr t) - DM,,,, Eq.(18)
1 orsin(o_t)+cos(o_t) h o= © ©0000E080000000
e 1 bm or )
o 1 'yvvv"'VV'vvv v Y Y YYV YVVYYVYVVVVYY
= N ’
(=) 00‘8 Byou//o vV \V VVVVVVVVVVVVVIV
o .
5 '..... 80 DPr
E ...- o .... v o
0014 * °© D, Eq.(17) \ o DM,
] ] o P v DM
& o .
c cos( (opmt )+S|n(mpr 1)
a* i ° or sin(w, t J*sin(e,, (a)
*,
- -,
S %oy
= Region 4 | Region 3| Region 2 Region 1
1E-3 MR | T ML | MR | T 1
0.01 0.1 1 10 100

Normalized pump frequency o)pm/(npr

] .
014 —*—DM_

] ORGREARBP VIR R~ — o

}atAr=5x10'4 Dy Lata =2x10°2
b om, %

5
= /‘
(=] ol
0.014 %
-g ] oy
] — -3
m‘_ . e **,ﬂ* / D, at Apr—2 x 10
Dn' P - 3 ¥ _ T
*
¥ D, at A =5x10"*
S 0 o (b)
Region 1 => Region2 =>3 =>4
T Ty Ty Ty Ty 1
0.01 0.1 1 10 100

Normalized probe frequency ‘°prl‘°pm

Fig. 5. Nonlinear decrements (filled symbols) and variations in elasticity (empty symbols) plotted against pump and probe wave frequencies for
materials with quadratic hysteresis. (a) Dy, Dpm and DMy, DMy, for strain amplitudes Ay, = 0.03, 4, = 0.001 and different mutual phasing
against wpm/@p,. (b) Dy, and modulus defect DM, for the probe-wave against w,,/®pm. Pump amplitude A4, = 0.03. Circles are for probe strain
amplitude A4, = 0.002 and asterisks for 4, = 0.0005. Dashed horizontal line corresponds to the probe wave decrement in the absence of the pump

for 4, = 0.002 and dotted line is for 4, = 0.0005.

For such a significant difference in the strain ampli-
tudes, the decrement of the pump wave is determined
mostly by its self-action and exhibits only slight varia-
tions induced by the probe wave. In contrast, for the
probe wave, the dependence of the decrement is essen-
tially determined by the pump-influence and is non-
monotonous with qualitatively different behaviour in
regions 1-4 in Fig. 5. In regions 1 and 2 both the strain
amplitude of the pump and its strain-rate are signifi-
cantly stronger than those for the probe oscillation, so
that the interaction type is simplex as illustrated in
Fig. 6 (regions 1, 2). For the high-frequency pump (see
Fig. 6 (region 1)), its larger hysteresis loop drifts slowly
in the weaker field of the probe wave, but the character
of straining remains simplex. Analytically this simplex
case of the strong pump was considered in [32]. The
numerical results for the lumped interaction can be com-
pared with the case of co-propagating waves at short
distance, for which the next approximate expression
for the probe wave decrement Dy, via the pump strain
amplitude A, follows from [32]:

cos?(wgm/2)
wr—1 |

2h
Dy = ~H
Ws

Apm [1 + (17)

where wg = wp, /W,y in notations [32] for the normalized
frequency. Analytical result (17) (see solid lines in Fig.
5(a)) agrees reasonably well with the numerical data
for the simplex regime. In region 1 the numerically
found probe wave decrement is weakly sensitive to the
mutual wave phasing, and well coincides with estimate
(17) indicating both quantitative agreement and func-
tionally the same law of the decrease Dy o< Wpr/Wpm.
In simplex region 2, the numerical data qualitatively
confirm the functional growth Dy, o wpm/wp, predicted
by Eq. (17), although quantitatively the results in region
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Fig. 6. Shapes of the stress—strain loops for different regimes of the
pump-probe interaction corresponding to regions 1-4 in Fig. 6.
Amplitude regions 1 and 2 are simplex due to simultaneous large
relative strain and large strain rate of the pump. Region 3 is essentially
complex even for stronger pump-wave amplitude due to its low strain
rate. Region 4 becomes again quasi-simplex for the probe wave, since
the pump strain rate is very low (quasi-static pump), and the probe-
wave hysteresis loop slowly drifts under the pump action.

2 are more phase-sensitive exhibiting stronger variations
around analytical estimate (17) for different wave phas-
ing. For simplex regimes near the transition between re-
gions 1 and 2 it is also essential to point that the probe
wave decrement D, depends mostly on the pump ampli-
tude Apy,, but not on the own amplitude A4, of the
weaker probe wave. This is confirmed by close values
of D, that are shown in Fig. 5(b) near the transition
“region 1 = region 2’ and that are obtained for two dif-
ferent probe-wave amplitudes.
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Concerning the variations in the elastic moduli, in
simplex regions 1 and 2, the numerically calculated val-
ues also agree well with the analytical result, which
follows from the approach described in [32] for co-
propagating waves and has the form similar to (17):

wgl— 1 (Sing)?))} '

After normalization to /iy function (18) is shown by the
dashed curve in Fig. 5(a). Comparison indicates that this
expression coincides well with the numerical data for
DM, shown in Fig. 5(a) (exhibiting, for example, the
same 2 times difference between the DM, magnitudes
for the low- and high-frequency pump waves in simplex
regions 2 and 1).

For still lower pump frequencies in regions 3, 4 the
probe-wave strain rate becomes greater than that of
the low-frequency pump, despite much higher strain
amplitude of the latter. Therefore, in region 3, the inter-
action becomes essentially non-simplex, since the probe
wave becomes able to create nested loops inside the lar-
ger pump-wave loop (see Fig. 6 (region 3)). In the non-
simplex region 3, both the induced decrement D, and
the modulus defect DM, deviate strongly from the ana-
lytical estimates (17) and (18). The modulus defect DM,
begins to monotonously decrease in regions 3, 4 for
decreasing pump-frequency: DMy, o< wpm/wp, (see Fig.
5(a)). In contrast to this monotonous behaviour of the
variations in the elasticity, the induced probe wave dec-
rement D, exhibits non-monotonous dependence. In re-
gion 3, the self-induced nested loops for the probe wave
result in the intermediate increase of the probe-wave
decrement. Physically one may argue that with increase
of ratio wp,/wpm, (in some range corresponding to region
3) the number of the nested loops increases and the
respective probe wave losses also increase. Finally, in re-
gion 4, for very low pump frequency the decrement be-
gins to decrease again. In this region the strain-rate in

DMy, = —hyApy, [1 - (18)
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the probe wave is much greater that those in the pump.
As a result, the interaction character becomes more sim-
ple again, since the shape of the own loops for the probe
wave is only weakly affected by the pump wave, and
these smaller loops slowly drift under the quasi-static ac-
tion of the pump as is illustrated in Fig. 6 (region 4).
Here the additional pump-induced irreversible work
for the probe wave gradually diminishes, so that approx-
imately D, < @pm/mp,,. Note also that, in region 4, the
pump-induced variation of the decrement for the probe
wave is significantly greater than the induced variation
in the elasticity, Dy, > DMp,, which looks like manifes-
tation of predominantly dissipative nonlinearity.

In Fig. 5(b) we show only probe wave parameters D,
and DM, in function of the relative probe-wave fre-
quency p/wpy for two ratios of the pump- and
probe-strain amplitudes. This plot may be considered
as a “mirror” plot in frequency domain in comparison
with Fig. 5(a), so that the order of regions 1-4 on the
frequency axis is inverse. Besides the almost-indepen-
dence of decrement D, on the probe wave amplitude
in simplex regime (transition between regions 1 and 2),
it is interesting to note that frequency dependence of
D, for wpy > w,, resembles the viscous-like case (that
is Dy, o< @y, in agreement with Eq. (17)) and is monoto-
nous. For the relatively low-frequency pump, wpm, <
py, the frequency behaviour of Dy, essentially depends
on the ratio of the pump and probe amplitudes and is
non-monotonous (much like in Fig. 5(a) near the transi-
tion between simplex and non-simplex regimes). The in-
duced decrement D, can be orders of magnitude greater
than the own hysteretic losses for the probe wave
(shown by dashed horizontal lines in Fig. 5(b)).

For all examples in Fig. 5 the transition between the
interaction regimes is caused by the change of the rela-
tive strain-rates due to variation in wave frequencies.
Alternatively, for fixed frequencies, the change of the re-
gime evidently could be obtained via varying wave

Apr cos(9) + Apm cos(6/10)

* A_sin(6) + A" sin(6/10)
Apr sin(0) + Apm cos(6/10)

<=

3 <=Region 2
1E3 ———rrrrr
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Fig. 7. Examples of amplitude dependencies for nonlinear decrements D,,,, and D,,. (a) Variable amplitude A, at fixed 4, =0.03 for a low-
frequency pump wp,/w,m = 50. (b) Variable amplitude A, at fixed 4, = 0.001 for a low-frequency pump w,/@,m = 10. Both dependencies for the

probe wave exhibit non-monotonous character much like in Fig. 5.
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amplitudes. It may be expected that the resultant non-
monotonous behaviour of Dy, due to changes in the re-
gimes could be noticeable in the amplitude dependencies
as well. The corresponding examples are displayed in
Fig. 7(a), in which decrement D, for the probe wave
is plotted as a function of its own amplitude A4, in the
case of a relatively strong and low frequency pump.
The pump frequency in this example is 50 times lower
than the probe frequency and pump strain A4, = 0.03
is chosen the same as for Fig. 5. The intermediate max-
imum (and then minimum) of the probe-wave decrement
corresponding to the simplex—complex transition in the
interaction regime is clearly visible in the amplitude
dependence shown in Fig. 7(a) (much like for fre-
quency-dependencies in Fig. 5). This pronounced
non-monotonous behaviour stably occurs for different
relative wave phasing near the transition region 3 = 4,
where the probe-wave strain A, is roughly wpm/
wpe = 50 times smaller than the pump-strain amplitude
Apm. At such amplitudes at any phasing the probe wave
is able to create multiple nested loops over the period of
the pump-wave. Due to insensitivity to the phasing these
intermediate extrema should persist at incommensurable
wave frequencies as well. It is interesting, however, that
for certain relative phasing (“‘cos—cos” case in Fig. 7(a))
there is another intermediate minimum for the probe-
wave decrement at much smaller probe-wave ampli-
tudes. This additional minimum appears only at a
special phasing, which is favourable for creation of
nested loops. For such phasing the transition from sim-
plex to non-simplex regime can manifest itself at much
smaller probe wave amplitude A, ~ (col[,m/wpr)zApm (as
discussed in the end of Section 2). Note also that, for
very small probe strain (in the perfectly simplex regime),
the induced decrement D, is independent on probe
amplitude 4,,, but in contrast D, is very sensitive to
the relative wave phasing (compare cos—cos and sin—
sin cases in Fig. 7(a)). The same phase sensitivity was
clearly seen in Fig. 5(a) in simplex region 2.

Finally, Fig. 7(b) presents for the dependence of D,
on the pump amplitude similar features for relatively
low-frequency pump, wp/@pm = 10. However, this fre-
quency ratio is not so big as in Fig. 7(a), so that even
the main intermediate minimum exhibits noticeable sen-
sitivity to the wave phasing not only in simplex region 2,
but in region 3 as well.

5. Conclusions

The proposed approach allowed us to investigate
mutually induced variations in the decrements and elas-
tic moduli for arbitrary ratio of strain- and strain rate
amplitudes of oscillations interacting in a hysteretic
medium. The simulations indicated that a stronger
pump-wave may induce strong additional losses for

the weaker wave, which are much greater than its own
hysteretic losses. It is essential that, for relatively low-
frequency pump-wave, the interaction regime may be-
come non-simplex even at probe-wave strains much
smaller than the pump-wave strains. This parameter
range is typical, for example, for experiments [28-30]
on interaction of pump-oscillations of ~3-10 kHz with
ultrasonic probe waves. It is important that the low-fre-
quency pump in the non-simplex regime may induce for
the probe-wave additional decrement that is almost an
order of magnitude greater than the induced variation
in the probe-wave velocity (see Fig. 5, regions 3, 4 with
D, > DM,,), in contrast to roughly the same order of
self-induced variations Dy, ~ DM, for the pump.
Such induced effects may look as a manifestation of pre-
dominantly dissipative nonlinearity. For high-frequency
pump-waves our analysis indicates the inverse situation:
pump-induced variations in elasticity for the probe wave
could be an order of magnitude larger than the comple-
mentary increase in the probe-wave decrement (see Fig.
5(a), region 1).

Frequency dependence of the pump-induced varia-
tions for the probe-wave parameters is non-monotonous
with strong difference between the cases of high- and
low- frequency pump and between simplex—complex re-
gimes. In parameter region 1, the dependence of the
probe-wave decrement D,. may be rather smooth in
function of both the pump-wave frequency and probe-
wave frequency (see Fig. 5). On the other hand, beyond
this region the frequency dependence of D, is non-
monotonous (either directly or inversely proportional
to pump/probe frequencies respectively to the left or to
the right from the wide extrema on the frequency axis
as shown in Fig. 5 near the transition between regimes
3 and 4).

Similar non-monotonous features may be seen in the
amplitude dependencies for the probe-wave decrement
(Fig. 7). In a wide amplitude range (within an order of
magnitude) near the transition between simplex and
non-simplex regimes 3, 4 the induced decrement D,
may depend rather weakly on both pump- and probe-
amplitudes. Besides, decrement D, for probe-wave with
a high accuracy does not depend on its own amplitude in
the region of very weak probe-wave amplitudes (see Fig.
7, simplex region 2).

By the order of magnitude the simulated normalized
elasticity/decrement variations (Fig. 5) agree satisfactory
with some available experimental data indicating com-
parable magnitudes of the complementary self-induced
and mutually induced effects. For example, in [29] the
additional decrement for the weaker probe pulses at
~200 kHz under the action of the pump wave at about
3.8 kHz could be estimated as Dy ~ 0.01-0.02 with
the complementary self-induced variation DM, ~ 0.04
for the elastic modulus, so that ratio DMpn/D,, was
about 2-3. The normalized plots presented in Figs. 5
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predict a similar magnitude of this ratio in a rather wide
range of the probe wave amplitude. More detailed com-
parison is complicated by the fact that the combined
influence of the elastic (reactive) part of nonlinearity to-
gether with conventional linear (e.g. thermoelastic or
viscous) relaxation may produce similar in magnitude
variations in the probe wave decrement, as was men-
tioned in [29]. Discrimination of these mechanisms using
frequency dependencies is not so simple. Indeed, Fig. 5
indicate that the frequency behaviour of D, essentially
depends on the interaction regime (2, 3 or 4), which in
its turn depends on the probe wave amplitude at given
pump- and probe-wave frequencies. Therefore, simple
notion that the probe-wave strain is much weaker than
the pump strain is not enough to specify the interaction
regime, and calibrated amplitude data are required. For
the interacting oscillations belonging to strongly differ-
ent frequency ranges this is often difficult to provide.
In this context, detailed studies of amplitude dependen-
cies (of the type presented in Fig. 7) in a wide strain
range at fixed known frequencies could be probably
more perspective. Another important point to be taken
into account is the influence of saturation of the hyster-
esis [41], which may essentially modify the discussed
above amplitude dependencies for the quadratic hyster-
esis without saturation.
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Appendix A. Derivation of integrals for the energy losses
and variations in elasticity

We start from the evolution equation for strain S in
hysteretic media derived in [41,34]:

S (Les ., A
0x 2pc; OS ) ot

where 7 =1¢— x/cy is the conventionally introduced
“running time”, and the “reference velocity” ¢j = E/p
is determined by the elastic modulus of the homoge-
neous solid matrix containing the hysteretic elements
(defects). Among the interacting components of the
total strain we single out the component with frequency
, which corresponds to the unit, n = 1, frequency for
the normalized time 0 = w1:

S1 = A(x) cos[0 + ¢(x)]. (A.2)
We are interested to find the variations in the absorption

and the elasticity for this component in presence of the
other excitations. Let us assume first that the frequency

of the other wave(s) is n > 1 and consider the nonlinear-
ity-induced variations for the selected wave A(x)cos
[0 + ¢(x)]. Substituting Eq. (A.2) into (A.1) and singling
out explicitly the terms related to the considered wave
one gets:

04 op .
P cos(0+ ¢) — Aa sin(0 + ¢)

. 0 oS

+ (components with n # 1) = (%Cg %) %"
(A.3)
Nonlinear term a.c’)’—s“ g—g also still contains all the frequen-

cies. Further separation of cos(f + ¢) and sin(6 + ¢)
spectral components in Eq. (A.3) yields:

04 1 /= 1 Oop\ OS
o/ (f K) a9 cos(0 + )0, (A4)

o 1 [/ 1 0Ooy)\oS .
AL = __ — | = . A.
- /, (2pcg as) 5o S0+ ¢)do. (AS)

For the formulated purpose to investigate the local vari-
ations in the absorption and the elasticity, we may put
approximately A(x)~ A(x =0)=A4 and ¢(x) =~ p(x =
0) =0 unless these variables are differentiated. Taking
into account that a(fSH &= aa%* and performing integration
by parts in Eq. (A.4) we obtain:

04 1 " . (-1) "

—=— 0do = ds A.6
o&x  2mpcy /, usim 2nAcoE / oudSi, (A.6)

¥ —T

where modulus £ = pcj and S is the considered strain-
harmonic with frequency w. Taking into account that |0/
00| = |wcy0/0x| this equation may be rewritten as

AW[ mZna—W:/ aHdSl, (A7)
a0 .
where AW, is the amount of losses (of the elastic energy
W = EA?/2 accumulated in the selected harmonic) dur-
ing one period 27 due to the hysteresis. Thus we recover
Eqgs. (6) and (7) for the energy losses. Note that for the
interaction with lower-frequency harmonics with n <1
the integration period is 2n/n, so that respective factors
K, appear in Eqgs. (6) and (7).

Performing the similar integration in Eq. (A.5) one
should take into account that derivative 0¢p/0x has the
meaning of correction Ak to the wave number k = w/c.
The latter relation readily gives Aklk = —Aclc ~ —AE/
(2E). Thus, via integration by parts, Eq. (A.5) yields
AE 1 [T

1 ¥
E NiT[_A 7n6HCOS9d9:E/7nGHS1d6' (AS)

This equation coincides with Egs. (9) and (10) in case of
interaction with higher harmonics (z > 1), and for n <1
the integration period equals to 27n/n, so that corre-
sponding factor K = n appears in Egs. (9) and (10).
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