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Abstract

Self-action and effects mutually induced by oscillations interacting in hysteretic media are investigated analytically and numer-

ically. Special attention is paid to non-simplex processes for which presence of intermediate extrema results in appearance of minor

nested loops inside the main hysteretic stress–strain loop. Non-simplex regimes are typical of interaction of excitations having dif-

ferent frequencies and amplitudes, but comparable strain rates. It is found that, due to transition between the regimes, frequency and

amplitude dependencies of the variations in elasticity and dissipation induced by one wave for another one may become non-monot-

onous. Either additional dissipation or induced transparency may occur in different regimes. The results obtained are important for

correct interpretation of experimental data on nonlinear acoustic interactions in rocks and many other microstructured (mesoscopic)

solids that are known to exhibit elastic hysteresis and memory properties.
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1. Introduction

Experimental studies of nonlinear self- and inter-ac-

tion of elastic waves in a wide class of solids (rocks,

polycrystalline metals, grainy materials, etc.) indicate

manifestations of hysteresis in the stress–strain relation-

ship. For large enough strains (from 10�3–10�4 down to

P10�5), direct observations of quasi-static hysteretic
loops have been known over 30–40 years [1–5]. For typ-

ical acoustic strains 610�6, such direct observations are

not yet available, so that the nonlinear stress–strain rela-

tionship has to be reconstructed via comparison of the-
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oretical predictions based on an assumed model(s) with

experiments [6–13], although such a reconstruction often

is not unique.

For example, in rocks and other microinhomoge-

neous solids, unlike homogeneous solids possessing

weak power-type atomic nonlinearity [14], an important

role may belong to manifestations of ‘‘non-classical’’

(and often non-analytical) contact nonlinearity [15–22],
together with nonlinear-dissipative [13,16] and slow

dynamics phenomena [23,24]. There is also general con-

sensus that, in these solids, the quasi-static hysteresis

may be responsible for such effects as nonlinear shift

in resonance frequencies accompanied by nonlinear dis-

sipation and higher harmonic generation in resonant-

bar experiments at sinusoidal excitation [6–12,25–27].

The recent trend is related to studies of interactions of
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waves of different frequencies in hysteretic materials

[13,21,24,28–35]. The main difficulty in the theoretical

description of these effects is related not to the very fact

of existence of hysteretic loops, but rather to the prop-

erty of memory [3,4,36] in a sense that the material re-

sponse may essentially depend on the history of its
deformation. This is especially important for compara-

ble strain rates of interacting excitations, for which hys-

teretic curves may exhibit multiple nested loops that

depend in a rather complex manner on previous extrema

in the material loading.

For strong enough difference in the strain amplitudes

and rates of the interacting waves, there are no nested

hysteretic loops (such processes are called simplex). This
case can be treated analytically using the perturbation

method. In such a way action of a stronger wave on an-

other weaker one is considered in paper [32]. The oppo-

site influence of a weaker excitation on the stronger one

was analyzed in [33]. Recently, an example of a non-sim-

plex interaction of co-propagating waves at fundamen-

tal and double-frequency harmonics was considered

for quadratic hysteresis with odd symmetry [34,35]. It
was found, in particular, that these waves can mutually

induce either additional absorption (darkening) or trans-

parency depending on the relative phases and ampli-

tudes.

It should be noted that any hysteretic nonlinearity

implies a nonlinear elastic part, which allows for effects

of synchronous scattering like in the case of purely elas-

tic nonlinearity. In order to delineate the role of hyster-
esis, we consider below the interaction of elastic

excitations in a volume of a hysteretic material with

dimensions smaller than the lengths of interacting

waves. This condition excludes spatial accumulation of

the scattering effects (taken into account in [32]), but

keeps the manifestations of local nonlinear-hysteretic

properties of the material. We focus on the effects of in-

duced variations of dissipation/transparency and varia-
tions in elasticity for one wave under the action of

another wave. Special attention will be paid to features

of non-simplex interaction regimes, which practically

have not been studied before either analytically or

numerically.
Fig. 1. Hysteretic model of an individual mesoscopic element M (inset)

and the PKM-plane (so, sc). Each element is parameterized by values of

respective strains so, sc corresponding to the element opening and

closing, and the variation in the individual stress Dr = rc � ro.
2. Model of the hysteretic nonlinearity

Following the terminology of [36] we use as a basis

for the analysis the so-called Preisach–Krasnoselsky ap-

proach to the description of hysteresis [37,38], which we

shall call below the PKM-formalism acknowledging its

further development made by Mayergoyz [39]. Accord-

ing to PKM-approach we assume that nonlinear hyster-

etic contribution to stress rH can be presented as a linear
superposition of the elementary contributions rM from

individual hysteretic mechanical elements (cracks,
microcontact interfaces, dislocations, etc.) embedded

into the elastic matrix material:

rHðsÞ ¼
X
M

rM : ð1Þ

Here s is the total material strain (in which the contribu-

tion of the linear elastic matrix strongly dominates). The

individual elements in the PKM-formalism are assumed

to switch their stress at certain threshold values of strain

so (‘‘opening’’) and sc (‘‘closing’’) as shown in Fig. 1 (the
plot at the inset). Eq. (1) formally corresponds to the ac-

tion of the non-interacting mechanical elements in paral-

lel (summation of forces). Note that the hysteretic

stress–strain relationship can also be achieved consider-

ing a linear superposition of the elementary volume

changes (strains) exhibited by the individual elements

at certain threshold values of the applied stresses

[8,11]. The distribution of the elements over their con-
trolling parameters in terms of either stresses (ro,rc)
or strains (so, sc), as in Fig. 1, is called the distribution

in the corresponding PKM-space. It was argued in

paper [34] that these representations are equivalent

when the hysteretic elements, embedded into the near-

Hookean (linear) matrix material, induce a small hyster-

etic correction to the equation of state.

Let us, as is conventionally done [8,36,40,41], consider
for individual mesoscopic elements the simplest hyster-

etic function of a rectangular shape, for which we assume

identical variation of threshold stresses Dr = rc � ro and
different threshold strains sc and so (see inset in Fig. 1).

We also admit the conventionally used assumption on

instantaneous switching [8,11,39,40]. In order to evaluate

the hysteretic correction to the elastic modulus (equal to

the derivative orH=os ¼
P

MorM=os) one needs to differ-
entiate the curve plotted in the inset in Fig. 1:

orM

os
¼ DrHðs; so; scÞ; Dr ¼ rc � ro > 0; ð2Þ
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Hðs; so; scÞ ¼ �
dðs� soÞ; if

os
ot

> 0; in closed state;

dðs� scÞ; if
os
ot

< 0; in open state;

8><
>:

ð3Þ
here os/ot is the time-derivative of strain. In order to

come to the stress–strain relationship, elementary

expressions (2) and (3) for the elastic moduli should

be further integrated over strain and summed for the

chosen distribution f(sc, so) of the elements in

the PKM-space. Since by definition sc < so (see Fig. 1),

the hysteretic elements at the plane (sc, so) can be located

only below the diagonal sc = so. Different material pro-
perties may be accounted for by using different f(sc, so),

for which f(sc, so)dscdso is the number (per unit physical

volume) of the elements with control parameters belong-

ing to intervals [sc, sc + dsc] and [so, so + dso]. Examples

of reconstruction of inhomogeneous distributions of

the hysteretic elements in order to describe particular

forms of hysteretic stress–strain experimental protocols

are given e.g. in [42]. However, typically such distribu-
tions manifest noticeable inhomogeneity at quite large

strains, of the order of 10�4 and more, whereas in acous-

tics of solids typical strains are orders of magnitude

smaller, so that for these small strains the distribution

function could be approximated by a constant,

f(sc,so) = f0 = const. In such a case it was analytically

shown in [43] that, for a simplex quasi-periodical strain-

ing with one maximum smax and one minimum smin over
a loading cycle, the hysteretic correction rH in the equa-
tion of state is of an odd-type and is quadratic in strain:

rH ¼

rHðsmaxÞ þ
hHE
2

ðs� smaxÞ2;
os
ot

< 0;

rHðsminÞ �
hHEðs� sminÞ2

2
¼ rHðsmaxÞ

� hHE
2

½ðs� sminÞ2 � ðsmax � sminÞ2�;
os
ot

> 0:

8>>>>>><
>>>>>>:

ð4Þ
Here E is the linear elastic modulus (determined by the

matrix material), and hH = f0Dr/E is the characteristic
nondimensional parameter of the hysteretic quadratic

nonlinearity. In Eqs. (4) the background level of stress

is not specified. Indeed, this constant does not affect

the shape of the hysteresis loop, which determines phys-

ical manifestations of the hysteresis (that is harmonic
amplitudes, energy dissipation proportional to the loop

area in the r(s) plane, variations of the elastic modulus,
etc.). It is convenient to consider the hysteretic stress in

the normalized form rH=ðhHEÞ ! ~rH, which we shall
use below omitting the tilde. Strain s can be conveniently

normalized to some characteristic strain sch beyond

which distribution f(sc, so) cannot be considered as con-

stant, S = s/sch, so that below we limit ourselves to small
enough strains S 	 1 for which f(sc, so) 
 f0.
For a non-simplex loading with intermediate extrema

the boundary between open and closed elements at the

PKM-plane becomes step-wise (Fig. 1 demonstrates

one intermediate step-wise ‘‘switching front’’, bold seg-

ment AB). Such intermediate steps correspond to

branches of minor nested loops inside a bigger loop at
the stress–strain plane. Much like a simplex loop the

branches of the minor loops are described by Eqs. (4),

but smax and smin have the meaning of the respective

intermediate extrema. Further, at the moment when a

minor step (bold segment AB in Fig. 1) is absorbed by

the bigger step (segment CD in Fig. 1) the ‘‘switching

segment’’ experiences instantaneous elongation (from

length AB to length CD as is clear from Fig. 1). The
minor loop at this moment returns to the previous-order

hysteresis branch started from the corresponding previ-

ous extremum (in other words, the system ‘‘memory’’

about the intermediate maximum, denoted as point E

in Fig. 1, is ‘‘wiped out’’ and the further evolution is

determined by the higher previous maximum denoted

as point F). The larger branch is again described by

Eqs. (4) with the extrema appropriately ‘‘switched’’ to
the previous values. This switching between the hyster-

etic branches corresponds to the effect of ‘‘memory’’

for non-simplex processes, which in more details is dis-

cussed in [34]. Based on the described principle of

matching minor and major hysteretic branches of the

form given by Eqs. (4), a numerical code was developed

to construct hysteretic stress–strain dependencies for

arbitrarily complex strain histories. The code determines
all the extrema occurring during the given material

straining and constructs the corresponding hysteretic

stress–strain dependencies keeping track of the memory

effects and nested loops as discussed above (some exam-

ples are given in Figs. 2 and 3). Experimental observa-

tions of complex hysteresis loops of such a type can be

found, for example, in [3,42,44].

A higher-frequency oscillation with strain amplitude
AHF may create its own smaller loops only when its

strain-rate xHFAHF becomes higher than the strain-rate
xLFALF in the lower-frequency oscillation at some
phases of the period of the slower oscillation, as was ar-

gued in [29]. Complex character of straining at high fre-

quency ratio xHF/xLF� 1 may occur even for AHF/

ALF	 1, the exact threshold being dependent on the

mutual phasing of the oscillations. Indeed, the largest
strain-rate amplitude xHFAHF of the fast oscillation is
required in order to exceed the strain rate of the low-fre-

quency oscillation in the vicinity of its strain-rate extre-

ma xLFALF. At this unfavourable for creation of nested
loops phasing, the threshold condition is AHF > (xLF/
xHF)ALF. However, in the special case of creation of
nested loops near zeros of the strain-rate in the slow

oscillation, much smaller amplitude AHF can suffice. In
this case the amplitude of strain rate xHFAHF in

the high-frequency excitation should be compared
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with a characteristic strain rate � x�1
HFd=dtðdSLF=dtÞ ¼

ðx2LF=xHFÞALF attainable by the low-frequency excita-
tion near its strain-rate zeros during the period of the

high-frequency oscillation. Thus the threshold condition

for this case is much softer, AHF > (xLF/xHF)
2ALF (see

also [33]). Analytically nested loops can be described
in ample details only for simple special cases [33–35].

For arbitrary loading their forms will be found numeri-

cally and then used for evaluation of hysteresis-induced

effects via the procedure described below.
3. Method of investigation of the interaction

Here we present a few general relations describing in

a unified form the effects of self-action as well as the

influence of one oscillation on the dissipation and elas-

ticity for another oscillation. Let us consider the mate-

rial straining of the form

S ¼ A cos h þ a cosðnh þ uÞ 
 SA þ Sa; ð5Þ
where h = xt is the nondimensional time and n is the

ratio of the frequencies of the two oscillations. We shall

limit ourselves to rational n in order to be able to con-

sider the process as periodical and to avoid long-time

averaging for incommensurable frequencies. However,

we shall consider arbitrary amplitude ratios between

the interacting waves. In case of strongly different ampli-

tudes we shall call the stronger and the weaker waves
‘‘pump’’ and ‘‘probe’’ respectively.

For the hysteresis-induced losses DWA and DWa

per one oscillation period (for the waves at frequen-

cies x and nx, respectively) the following expressions
have been derived (see Appendix A and also Refs.

[33,34]):

DW A ¼ K1

I
rHðhÞdSAðhÞ; K1 ¼

1=n; n < 1;

1; n > 1;

�
ð6Þ

DW a ¼ K2

I
rHðhÞdSaðhÞ; K2 ¼

1=n; n > 1;

1; n < 1:

�
ð7Þ

The integration in Eqs. (6) and (7) is performed over the

total period T determined by the oscillation with the

lower frequency:

T ¼
2p; for n > 1;

2p=n; for n < 1:

�
ð8Þ

Eqs. (6) and (7) are valid for arbitrary phases. For the par-

ticular phasing described by Eq. (5), rHðhÞ ¼
rHðA cos h þ a cosðnh þ uÞÞ, dSA ¼ � sin hdh and dSa ¼
�n sinðnh þ uÞdh in Eqs. (6) and (7). Note that in

the case of only one wave (either a = 0, or A = 0)

the expressions for the losses DWA,a have the conven-

tional sense of the area of the hysteresis stress–strain loop.
Similar expressions can be obtained for the hystere-

sis-induced variations in the velocities (elastic moduli)

for each of the waves (see Appendix A):

DEA

E
¼ K

pA2

I
rHðhÞSAðhÞdh; ð9Þ

DEa

E
¼ K

pa2

I
rHðhÞSaðhÞdh; K ¼

1; n > 1;

n; n < 1:

�
ð10Þ

Eqs. (6)–(10) will be used below for numerical simula-

tions via direct integration of the stress–strain curves

accounting for eventual nested loops. These results will
be compared with analytical treatment for the simplex

type interaction [32–34] and for some particular situa-

tions in complex regimes, which also allowed for analyt-

ical investigation.
4. Induced absorption and transparency for two-wave

interaction in hysteretic materials

Numerical evaluation of Eqs. (6)–(10) for excitations

with incommensurable frequencies requires long aver-

aging over intervals much larger than the periods of

beatings of the interacting oscillations. However, main

features can be demonstrated using periodical pro-

cesses (that is using rational parameter n in Eq. (5)),

which requires much smaller computation time. As ar-
gued above, for the odd-type hysteretic nonlinearity,

the higher harmonics generated are of odd orders as

well. Therefore, since for even numbers n in Eq. (5)

the frequencies of the harmonics do not coincide with

frequencies of the initial waves, this ensures that the pre-

dicted mutual influence of the oscillations is essentially

due to the hysteresis rather than due to the direct nonlin-

ear frequency mixing typical of any elastic nonlinearity.
By the same reasons, in order to reliably distinguish for

odd numbers n the effect of the hysteresis and the

frequency-mixing, we have to consider only the influence

of the higher-frequency oscillation upon the lower-

frequency one.

In the sections below we limit ourselves to consider-

ation of the quadratic hysteresis described by Eqs. (4)

(which correspond to homogeneous density of the
PKM-elements for normalized strains S 	 1). The influ-

ence of hysteresis saturation at higher amplitudes is

readily accounted by the suggested simulation procedure

and may essentially modify the results. The discussion of

the revealed saturation effects will be published

elsewhere.

4.1. Interaction of x–2x type

For preliminary testing the numerical code, we start

with a particular mutual phasing u = 0, frequency ratio



Fig. 2. Nonlinear decrements and modulus defect as functions of

amplitudes A1,2 for x–2x interaction. Insets show nested loops

produced by 2x-wave inside x-wave hysteresis loop. (a) Variable
amplitude A1 at fixed A2 = 0.001. (b) Variable A2 at fixed A1 = 0.001.

Solid lines at (a) and (b) correspond to analytical result Eqs. (12)–(15).

(c) Variable A2 at fixed A1 = 0.001 for cosh + sin2h and sinh + sin2h
phasing. In case (c) unlike case (b) decrements D1,2 exhibit no minima

in function of A2.
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n = 2 and the oscillation amplitudes A = A1, a = A2 in

Eq. (5):

S ¼ A1 cos h þ A2 cosð2hÞ: ð11Þ

For such parameters and for quadratic hysteresis, Eqs.
(6) and (7) and Eqs. (9) and (10) can be rigorously eval-

uated analytically even for a non-simplex straining by

properly taking into account the amplitude-dependent

displacements of the extrema. Using the calculated en-

ergy losses DWi over the period the resultant dissipation

for each of the waves may be conveniently characterized

by the decrement Di = DWi/(2Wi) defined via the maxi-

mal accumulated elastic energy W i ¼ Es2i =2 in the ith
wave. The conventionally used quality factor thus

equals to Qi = p/Di.

It is convenient to present the final results in normal-

ized form D1,2 = D1,2/(hHs
0), A1,2 = A1,2/s

0, and to

choose the characteristic strain amplitude s0 the same

as in Eqs. (4): s0 = sch. Note that for a simplex sinusoidal

process with strain amplitude s0 the decrement Dsimp
determined by the area of the hysteretic loop is
Dsimp = (4/3)hHs

0. The respective expressions for the

hysteresis-induced normalized decrements D1,2 for the

two oscillations in the different regimes have the forms

(see also [34])

D1 ¼ ð4=3Þ
A1 1� 1

5p2

	 

; p > 1 ðsimplexÞ;

A2 1þ 2p2 þ 1
5
p4

� �
; p < 1 ðcomplexÞ;

8<
:

ð12Þ

D2 ¼ ð4=3Þ
8
5
A1; p > 1 ðsimplexÞ;
A2 1þ 7p2 � p4 � 3

5
p6

� �
; p < 1 ðcomplexÞ:

(

ð13Þ

Here p = A1/4A2, and p = 1 is the threshold between sim-
plex and complex regimes for the particular phasing

(11). A similar procedure of calculating the integrals

(9) and (10) yields the following expressions for relative

variations DE1,2/E in the elastic moduli (which are de-
noted for brevity as DM1,2 and are also normalized to

the factor hHs
0 like the decrements D1,2):

DM1 ¼

A1; p > 1 ðsimplexÞ;

A2 pð1þ pÞ2 þ 4
3
ð2þ p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

pn
�4p arccosðpÞ

o
=p; p < 1 ðcomplexÞ;

8>>>><
>>>>:

ð14Þ

DM2¼

A1; p> 1 ðsimplexÞ;

A2 pð1þpÞ2þ 4
3
p2ð5�2p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

pn
�4parccosðpÞ

o
=p; p< 1 ðcomplexÞ:

8>>><
>>>:

ð15Þ
Fig. 2(a) and (b) demonstrates a perfect agreement be-

tween the numerically calculated and analytically found

nonlinear decrements and the variations in the elastic

moduli for the cosh + cos(2h) phasing of the waves,
which are plotted as functions of strain amplitudes

A1,2. Fig. 2(c) shows analogous dependencies on A2 for
other characteristic cases of the mutual wave phasing,

for which analytical solutions are not available. The
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plots demonstrate that when one wave is much stronger

than the other, the induced decrement for the weaker

wave is independent on its own amplitude. In this sense

the weak-wave losses induced due to nonlinear interac-

tion with the strong wave resemble linear (e.g. viscous)

losses, and these losses normally increase with increasing
amplitude of the stronger. However, for some phasing

(e.g. the cases shown in Fig. 2(b)) the 2x-wave may in-
duce local minima in the decrements for both waves,

which happens in the complex regime for comparable

amplitudes of the waves. Note that, in contrast to the

dissipation, for the elasticity variations DM1,2 the inter-

mediate minima do not exist at any phasing. It should be

underlined that the calculated decrements correspond to
the ‘‘genuine dissipation’’, in other words, this is the

time-averaged irreversible work produced by the

strain-actuators for the respective oscillation (in pres-

ence of another oscillation). These losses are essentially

due to jumping (switching) of the elastic modulus at the

end-points of the hysteretic loops. In contrast, in the

case of purely elastic nonlinearity the elastic energy in

average is conserved inside the material and the two
oscillations produce their work independently in average

(although the energy is periodically redistributed in

reversible way between the fundamental and nonlinear-

ity-induced components). Formally this corresponds to

zero value of integrals (6) and (7) (that is zero area con-

toured by elastically-nonlinear stress–strain curves with-

out splitting over a period).

4.2. Interaction of x–3x type

Similar to the considered above, but quantitatively

even stronger non-monotonous influence on x-wave
can be produced by a 3x-oscillation which is capable
to create nested loops near both extrema of the x-wave.
As a result, the induced local minimum in the decrement

D1 is deeper than that for interaction with 2x-wave as is
illustrated in Fig. 3 (see also the note on odd frequency

ratios in the beginning of Section 4). Moreover, for the

‘‘optimal’’ phasing (sin–sin type interaction) Fig. 3 dem-

onstrates a local minimum for the variation in the elas-

ticity DM1 as well. It is interesting to check for arbitrary

mutual phasing whether the phase-averaged induced

transparency for D1 may persist or not. Fig. 4 shows

the influence of the phase shift u3 of the interacting
x–3x waves

S ¼ A1 cos h þ A2 cosð3h þ u3Þ; ð16Þ
on the decrement D1 of the x-wave. The dashed hori-
zontal line shows the reference magnitude of the self-in-

duced nonlinear dissipation for the x-wave. This plot
indicates that the phase region of the increased dissipa-
tion of the x-wave dominates, so that for x–3x interac-
tion the phase-averaged induced transparency cannot be

obtained for x-wave.
4.3. Interaction of x–nx type

Let us discuss now the influence of the difference in
frequencies between the interacting waves. We again as-

sume the probe wave amplitude Apr to be much smaller

than the pump-wave amplitude Apm. In order to avoid

the masking effect of directly generated odd-harmonics

of the waves we choose even ratios of the frequencies,

as was argued above. Fig. 5(a) presents the hysteresis-in-

duced decrements and variations in the elasticity for

each of the waves as functions of their relative frequency
xpm/xpr. It is important that even for a weak probe
wave (30 times smaller in amplitude than the pump for

Fig. 5(a)) the interaction becomes essentially non-sim-

plex at higher probe-frequency.



Fig. 5. Nonlinear decrements (filled symbols) and variations in elasticity (empty symbols) plotted against pump and probe wave frequencies for

materials with quadratic hysteresis. (a) Dpr, Dpm and DMpr, DMpm for strain amplitudes Apm = 0.03, Apr = 0.001 and different mutual phasing

against xpm/xpr. (b) Dpr and modulus defect DMpr for the probe-wave against xpr/xpm. Pump amplitude Apm = 0.03. Circles are for probe strain
amplitude Apr = 0.002 and asterisks for Apr = 0.0005. Dashed horizontal line corresponds to the probe wave decrement in the absence of the pump

for Apr = 0.002 and dotted line is for Apr = 0.0005.
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Amplitude regions 1 and 2 are simplex due to simultaneous large

relative strain and large strain rate of the pump. Region 3 is essentially

complex even for stronger pump-wave amplitude due to its low strain

rate. Region 4 becomes again quasi-simplex for the probe wave, since

the pump strain rate is very low (quasi-static pump), and the probe-

wave hysteresis loop slowly drifts under the pump action.
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For such a significant difference in the strain ampli-

tudes, the decrement of the pump wave is determined

mostly by its self-action and exhibits only slight varia-

tions induced by the probe wave. In contrast, for the

probe wave, the dependence of the decrement is essen-

tially determined by the pump-influence and is non-

monotonous with qualitatively different behaviour in

regions 1–4 in Fig. 5. In regions 1 and 2 both the strain
amplitude of the pump and its strain-rate are signifi-

cantly stronger than those for the probe oscillation, so

that the interaction type is simplex as illustrated in

Fig. 6 (regions 1, 2). For the high-frequency pump (see

Fig. 6 (region 1)), its larger hysteresis loop drifts slowly

in the weaker field of the probe wave, but the character

of straining remains simplex. Analytically this simplex

case of the strong pump was considered in [32]. The
numerical results for the lumped interaction can be com-

pared with the case of co-propagating waves at short

distance, for which the next approximate expression

for the probe wave decrement Dpr via the pump strain

amplitude Apm follows from [32]:

Dpr ¼
2hH
xS

Apm 1þ
cos2ðxSp=2Þ

x2S � 1

� �
; ð17Þ

where xS = xpr/xpm in notations [32] for the normalized
frequency. Analytical result (17) (see solid lines in Fig.
5(a)) agrees reasonably well with the numerical data

for the simplex regime. In region 1 the numerically

found probe wave decrement is weakly sensitive to the

mutual wave phasing, and well coincides with estimate

(17) indicating both quantitative agreement and func-

tionally the same law of the decrease Dpr / xpr/xpm.
In simplex region 2, the numerical data qualitatively

confirm the functional growth Dpr / xpm/xpr predicted
by Eq. (17), although quantitatively the results in region
2 are more phase-sensitive exhibiting stronger variations

around analytical estimate (17) for different wave phas-

ing. For simplex regimes near the transition between re-

gions 1 and 2 it is also essential to point that the probe

wave decrement Dpr depends mostly on the pump ampli-

tude Apm, but not on the own amplitude Apr of the

weaker probe wave. This is confirmed by close values

of Dpr that are shown in Fig. 5(b) near the transition
‘‘region 1) region 2’’ and that are obtained for two dif-

ferent probe-wave amplitudes.
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Concerning the variations in the elastic moduli, in

simplex regions 1 and 2, the numerically calculated val-

ues also agree well with the analytical result, which

follows from the approach described in [32] for co-

propagating waves and has the form similar to (17):

DMpr ¼ �hHApm 1�
1

x2S � 1
sinðpxSÞ

pxS

� �� �
: ð18Þ

After normalization to hH function (18) is shown by the

dashed curve in Fig. 5(a). Comparison indicates that this

expression coincides well with the numerical data for

DMpr shown in Fig. 5(a) (exhibiting, for example, the
same 2 times difference between the DMpr magnitudes

for the low- and high-frequency pump waves in simplex

regions 2 and 1).

For still lower pump frequencies in regions 3, 4 the

probe-wave strain rate becomes greater than that of

the low-frequency pump, despite much higher strain

amplitude of the latter. Therefore, in region 3, the inter-

action becomes essentially non-simplex, since the probe
wave becomes able to create nested loops inside the lar-

ger pump-wave loop (see Fig. 6 (region 3)). In the non-

simplex region 3, both the induced decrement Dpr and

the modulus defect DMpr deviate strongly from the ana-

lytical estimates (17) and (18). The modulus defect DMpr

begins to monotonously decrease in regions 3, 4 for

decreasing pump-frequency: DMpr / xpm/xpr (see Fig.
5(a)). In contrast to this monotonous behaviour of the
variations in the elasticity, the induced probe wave dec-

rement Dpr exhibits non-monotonous dependence. In re-

gion 3, the self-induced nested loops for the probe wave

result in the intermediate increase of the probe-wave

decrement. Physically one may argue that with increase

of ratio xpr/xpm (in some range corresponding to region
3) the number of the nested loops increases and the

respective probe wave losses also increase. Finally, in re-
gion 4, for very low pump frequency the decrement be-

gins to decrease again. In this region the strain-rate in
Fig. 7. Examples of amplitude dependencies for nonlinear decrements Dpm
frequency pump xpr/xpm = 50. (b) Variable amplitude Apm at fixed Apr = 0.0

probe wave exhibit non-monotonous character much like in Fig. 5.
the probe wave is much greater that those in the pump.

As a result, the interaction character becomes more sim-

ple again, since the shape of the own loops for the probe

wave is only weakly affected by the pump wave, and

these smaller loops slowly drift under the quasi-static ac-

tion of the pump as is illustrated in Fig. 6 (region 4).
Here the additional pump-induced irreversible work

for the probe wave gradually diminishes, so that approx-

imately Dpr / xpm/xpr. Note also that, in region 4, the
pump-induced variation of the decrement for the probe

wave is significantly greater than the induced variation

in the elasticity, Dpr� DMpr, which looks like manifes-

tation of predominantly dissipative nonlinearity.

In Fig. 5(b) we show only probe wave parameters Dpr
and DMpr in function of the relative probe-wave fre-

quency xpr/xpm for two ratios of the pump- and

probe-strain amplitudes. This plot may be considered

as a ‘‘mirror’’ plot in frequency domain in comparison

with Fig. 5(a), so that the order of regions 1–4 on the

frequency axis is inverse. Besides the almost-indepen-

dence of decrement Dpr on the probe wave amplitude

in simplex regime (transition between regions 1 and 2),
it is interesting to note that frequency dependence of

Dpr for xpm > xpr resembles the viscous-like case (that
is Dpr / xpr in agreement with Eq. (17)) and is monoto-
nous. For the relatively low-frequency pump, xpm	
xpr, the frequency behaviour of Dpr essentially depends
on the ratio of the pump and probe amplitudes and is

non-monotonous (much like in Fig. 5(a) near the transi-

tion between simplex and non-simplex regimes). The in-
duced decrement Dpr can be orders of magnitude greater

than the own hysteretic losses for the probe wave

(shown by dashed horizontal lines in Fig. 5(b)).

For all examples in Fig. 5 the transition between the

interaction regimes is caused by the change of the rela-

tive strain-rates due to variation in wave frequencies.

Alternatively, for fixed frequencies, the change of the re-

gime evidently could be obtained via varying wave
and Dpr. (a) Variable amplitude Apr at fixed Apm = 0.03 for a low-

01 for a low-frequency pump xpr/xpm = 10. Both dependencies for the
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amplitudes. It may be expected that the resultant non-

monotonous behaviour of Dpr due to changes in the re-

gimes could be noticeable in the amplitude dependencies

as well. The corresponding examples are displayed in

Fig. 7(a), in which decrement Dpr for the probe wave

is plotted as a function of its own amplitude Apr in the
case of a relatively strong and low frequency pump.

The pump frequency in this example is 50 times lower

than the probe frequency and pump strain Apm = 0.03

is chosen the same as for Fig. 5. The intermediate max-

imum (and then minimum) of the probe-wave decrement

corresponding to the simplex–complex transition in the

interaction regime is clearly visible in the amplitude

dependence shown in Fig. 7(a) (much like for fre-
quency-dependencies in Fig. 5). This pronounced

non-monotonous behaviour stably occurs for different

relative wave phasing near the transition region 3) 4,

where the probe-wave strain Apr is roughly xpm/
xpr = 50 times smaller than the pump-strain amplitude
Apm. At such amplitudes at any phasing the probe wave

is able to create multiple nested loops over the period of

the pump-wave. Due to insensitivity to the phasing these
intermediate extrema should persist at incommensurable

wave frequencies as well. It is interesting, however, that

for certain relative phasing (‘‘cos–cos’’ case in Fig. 7(a))

there is another intermediate minimum for the probe-

wave decrement at much smaller probe-wave ampli-

tudes. This additional minimum appears only at a

special phasing, which is favourable for creation of

nested loops. For such phasing the transition from sim-
plex to non-simplex regime can manifest itself at much

smaller probe wave amplitude Apr � (xpm/xpr)2Apm (as
discussed in the end of Section 2). Note also that, for

very small probe strain (in the perfectly simplex regime),

the induced decrement Dpr is independent on probe

amplitude Apr, but in contrast Dpr is very sensitive to

the relative wave phasing (compare cos–cos and sin–

sin cases in Fig. 7(a)). The same phase sensitivity was
clearly seen in Fig. 5(a) in simplex region 2.

Finally, Fig. 7(b) presents for the dependence of Dpr
on the pump amplitude similar features for relatively

low-frequency pump, xpr/xpm = 10. However, this fre-
quency ratio is not so big as in Fig. 7(a), so that even

the main intermediate minimum exhibits noticeable sen-

sitivity to the wave phasing not only in simplex region 2,

but in region 3 as well.
5. Conclusions

The proposed approach allowed us to investigate

mutually induced variations in the decrements and elas-

tic moduli for arbitrary ratio of strain- and strain rate

amplitudes of oscillations interacting in a hysteretic
medium. The simulations indicated that a stronger

pump-wave may induce strong additional losses for
the weaker wave, which are much greater than its own

hysteretic losses. It is essential that, for relatively low-

frequency pump-wave, the interaction regime may be-

come non-simplex even at probe-wave strains much

smaller than the pump-wave strains. This parameter

range is typical, for example, for experiments [28–30]
on interaction of pump-oscillations of �3–10 kHz with
ultrasonic probe waves. It is important that the low-fre-

quency pump in the non-simplex regime may induce for

the probe-wave additional decrement that is almost an

order of magnitude greater than the induced variation

in the probe-wave velocity (see Fig. 5, regions 3, 4 with

Dpr� DMpr), in contrast to roughly the same order of

self-induced variations Dpm � DMpm for the pump.
Such induced effects may look as a manifestation of pre-

dominantly dissipative nonlinearity. For high-frequency

pump-waves our analysis indicates the inverse situation:

pump-induced variations in elasticity for the probe wave

could be an order of magnitude larger than the comple-

mentary increase in the probe-wave decrement (see Fig.

5(a), region 1).

Frequency dependence of the pump-induced varia-
tions for the probe-wave parameters is non-monotonous

with strong difference between the cases of high- and

low- frequency pump and between simplex–complex re-

gimes. In parameter region 1, the dependence of the

probe-wave decrement Dpr may be rather smooth in

function of both the pump-wave frequency and probe-

wave frequency (see Fig. 5). On the other hand, beyond

this region the frequency dependence of Dpr is non-
monotonous (either directly or inversely proportional

to pump/probe frequencies respectively to the left or to

the right from the wide extrema on the frequency axis

as shown in Fig. 5 near the transition between regimes

3 and 4).

Similar non-monotonous features may be seen in the

amplitude dependencies for the probe-wave decrement

(Fig. 7). In a wide amplitude range (within an order of
magnitude) near the transition between simplex and

non-simplex regimes 3, 4 the induced decrement Dpr
may depend rather weakly on both pump- and probe-

amplitudes. Besides, decrement Dpr for probe-wave with

a high accuracy does not depend on its own amplitude in

the region of very weak probe-wave amplitudes (see Fig.

7, simplex region 2).

By the order of magnitude the simulated normalized
elasticity/decrement variations (Fig. 5) agree satisfactory

with some available experimental data indicating com-

parable magnitudes of the complementary self-induced

and mutually induced effects. For example, in [29] the

additional decrement for the weaker probe pulses at

�200 kHz under the action of the pump wave at about
3.8 kHz could be estimated as Dpr � 0.01–0.02 with
the complementary self-induced variation DMpm � 0.04
for the elastic modulus, so that ratio DMpm/Dpr was

about 2–3. The normalized plots presented in Figs. 5
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predict a similar magnitude of this ratio in a rather wide

range of the probe wave amplitude. More detailed com-

parison is complicated by the fact that the combined

influence of the elastic (reactive) part of nonlinearity to-

gether with conventional linear (e.g. thermoelastic or

viscous) relaxation may produce similar in magnitude
variations in the probe wave decrement, as was men-

tioned in [29]. Discrimination of these mechanisms using

frequency dependencies is not so simple. Indeed, Fig. 5

indicate that the frequency behaviour of Dpr essentially

depends on the interaction regime (2, 3 or 4), which in

its turn depends on the probe wave amplitude at given

pump- and probe-wave frequencies. Therefore, simple

notion that the probe-wave strain is much weaker than
the pump strain is not enough to specify the interaction

regime, and calibrated amplitude data are required. For

the interacting oscillations belonging to strongly differ-

ent frequency ranges this is often difficult to provide.

In this context, detailed studies of amplitude dependen-

cies (of the type presented in Fig. 7) in a wide strain

range at fixed known frequencies could be probably

more perspective. Another important point to be taken
into account is the influence of saturation of the hyster-

esis [41], which may essentially modify the discussed

above amplitude dependencies for the quadratic hyster-

esis without saturation.
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Appendix A. Derivation of integrals for the energy losses

and variations in elasticity

We start from the evolution equation for strain S in

hysteretic media derived in [41,34]:

oS
ox

� 1

2qc30

orH
oS

� �
oS
os

¼ 0; ðA:1Þ

where s = t � x/c0 is the conventionally introduced

‘‘running time’’, and the ‘‘reference velocity’’ c20 ¼ E=q
is determined by the elastic modulus of the homoge-

neous solid matrix containing the hysteretic elements

(defects). Among the interacting components of the
total strain we single out the component with frequency

x, which corresponds to the unit, n = 1, frequency for
the normalized time h = xs:

S1 ¼ AðxÞ cos½h þ uðxÞ�: ðA:2Þ
We are interested to find the variations in the absorption

and the elasticity for this component in presence of the
other excitations. Let us assume first that the frequency
of the other wave(s) is n > 1 and consider the nonlinear-

ity-induced variations for the selected wave AðxÞ cos
½h þ uðxÞ�. Substituting Eq. (A.2) into (A.1) and singling
out explicitly the terms related to the considered wave

one gets:

oA
ox
cosðh þ uÞ � A

ou
ox
sinðh þ uÞ

þ ðcomponents with n 6¼ 1Þ ¼ x
2qc30

orH
oS

� �
oS
oh

:

ðA:3Þ

Nonlinear term orH
oS

oS
oh also still contains all the frequen-

cies. Further separation of cos(h + u) and sin(h + u)
spectral components in Eq. (A.3) yields:

oA
ox

¼ 1
p

Z p

�p

1

2qc30

orH
oS

� �
oS
oh
cosðh þ uÞdh; ðA:4Þ

A
ou
ox

¼ � 1
p

Z p

�p

1

2qc30

orH
oS

� �
oS
oh
sinðh þ uÞdh: ðA:5Þ

For the formulated purpose to investigate the local vari-
ations in the absorption and the elasticity, we may put

approximately A(x) 
 A(x = 0) = A and u(x) 
 u(x =
0) = 0 unless these variables are differentiated. Taking

into account that orH
oS

oS
oh ¼

orH
oh and performing integration

by parts in Eq. (A.4) we obtain:

oA
ox

¼ 1

2pqc30

Z p

�p
rH sin hdh ¼ ð�1Þ

2pAc0E

Z p

�p
rH dS1; ðA:6Þ

where modulus E ¼ qc20 and S1 is the considered strain-
harmonic with frequency x. Taking into account that jo/
ohj = jxc0o/oxj this equation may be rewritten as

DW 1 
 2p
oW
oh

¼
Z p

�p
rH dS1; ðA:7Þ

where DW1 is the amount of losses (of the elastic energy

W = EA2/2 accumulated in the selected harmonic) dur-

ing one period 2p due to the hysteresis. Thus we recover
Eqs. (6) and (7) for the energy losses. Note that for the

interaction with lower-frequency harmonics with n < 1

the integration period is 2p/n, so that respective factors
K1,2 appear in Eqs. (6) and (7).

Performing the similar integration in Eq. (A.5) one
should take into account that derivative ou/ox has the
meaning of correction Dk to the wave number k = x/c.
The latter relation readily gives Dk/k = �Dc/c 
 �DE/
(2E). Thus, via integration by parts, Eq. (A.5) yields

DE
E


 � 1

pA

Z p

�p
rH cos hdh ¼ 1

pA2

Z p

�p
rHS1 dh: ðA:8Þ

This equation coincides with Eqs. (9) and (10) in case of

interaction with higher harmonics (n > 1), and for n < 1

the integration period equals to 2p/n, so that corre-
sponding factor K = n appears in Eqs. (9) and (10).
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[37] F. Preisach, Über die magnetische Nachwirkung, Z. Phys. 94

(1935) 277.

[38] M. Krasnoselskii, A. Pokrovskii, Systems with Hysteresis, Nauka,

Moscow, 1983.

[39] I. Mayergoyz, Mathematical Models of Hysteresis and Their

Applications, Elsevier, 2003.

[40] K.R. McCall, R.A. Guyer, Equation of state and wave propaga-

tion in hysteretic nonlinear elastic material, J. Geophys. Res. 99

(1994) 23887–23897.

[41] V. Gusev, V. Aleshin, Strain wave evolution equation for

nonlinear propagation in materials with mesoscopic mechanical

elements, J. Acoust. Soc. Am. 112 (2002) 2666–2679.

[42] R.A. Guyer, K.R. McCall, G.N. Boitnott, L.B. Hilbert, T.J.

Plona, Quantitative implementation of Preisach–Mayergoyz space

to find static and dynamic elastic moduli in rock, J. Geophys. Res.

102 (1997) 5281–5293.

[43] V.E. Gusev, W. Lauriks, E. Thoen, Dispersion of nonlinearity,

nonlinear dispersion and absorption of sound in micro-inho-

mogeneous materials, J. Acoust. Soc. Am. 103 (1998) 3216–

3226.

[44] A.N. Tutuncu, A.L. Polio, A.R. Gregory, M.M. Sharma, Non-

linear viscoelastic behavior of sedimentary rocks, Pt. I: effect of

frequency and wave amplitude, Geophysics 63 (1998) 184–194.


	Mutually induced variations in dissipation and elasticity for oscillations in hysteretic materials: Non-simplex interaction regimes
	Introduction
	Model of the hysteretic nonlinearity
	Method of investigation of the interaction
	Induced absorption and transparency for two-wave interaction in hysteretic materials
	Interaction of  omega  ndash 2 omega  type
	Interaction of  omega  ndash 3 omega  type
	Interaction of  omega  ndash n omega  type

	Conclusions
	Acknowledgements
	Derivation of integrals for the energy losses and variations in elasticity
	References


