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Abstract. — Observations and interpretation of modulation instability (MI) in an acoustic
resonator with a crack-like defect are presented. This MI is similar in appearance to the con-
ventionally disscussed MI, which arises due to the interplay between the reactive nonlinearity
and velocity dispersion. However, the observed MI is due to an essentially different, purely
dissipative, mechanism that can be common for waves of different physical nature. The mecha-
nism exhibits interesting peculiarities, for example, the MI threshold can only be reached when
the excitation frequency does not coincide with the resonator eigenfrequencies.

Modulational instability (MI) is a nonlinear phenomenon manifesting itself in various areas
of physics including laser optics and plasma physics, fluid dynamics, chemistry and biology,
etc. and leading to spatial and/or temporal pattern formation and chaos [1-3]. MI is known
to happen for elastic waves as well [4-7]. Omitting details specific for a particular wave origin,
conventionally considered MI mechanisms can be roughly subdivided into three main groups.

The first most often discussed MI mechanism implies the interplay between odd-type non-
linearity and wave velocity dispersion [1,8]. At certain conditions (proper signs of nonlinearity
and dispersion) these factors result in instability of the uniform envelope and in appearance
of slow (at scale of the carrier frequency) modulation up to formation of envelope solitons.
This mechanism can be formalized based on Schrédinger-type dissipation-free equations with
cubic reactive nonlinearity [1,5,6,8]. Similar MI effects may also arise due to odd-type piece-
wise quadratic hysteretic nonlinearity (combining reactive and dissipative parts) [9] or due to
non-instantaneous (relaxing or integrating) nonlinearity [10].

Another group of MI phenomena is typical of laser physics, where media may be active
(with negative dissipation), so that the interplay between the activity-induced instability
and effects of either depletion of the pumping or influence of saturating absorption cause
modulation of the resultant radiation (up to strongly pulsed regimes) [1,2].

An essentially different group of MI phenomena (discussed mostly for acoustics, but also
applicable to other situations) imply more indirect mechanisms based on the parametric decay
instability of the primarily excited oscillation of frequency f, and subsequent interactions of
the parametrically induced subharmonics f1 2 with each other and/or with the primary wave.
For example, in quadratic-nonlinear resonant systems with complex, non-equidistant mode
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spectrum, favorable for the parametric decay of fy into slightly asymmetrical subharmonics
(fo=fi+fo, fre = fo/2£Q/2, Q < fo), the subsequent generation of the second harmonics
2f1,2 may result in appearance of the modulation spectral sidelobes near fy [7]. Alternatively,
for strongly asymmetrical decay (fo = f1 + f2, f1 = Q < f2), the envelope self-modulation
arises due to beatings between adjacent components fy and fo = fo — Q [4].

In the present letter we report experimental observations and interpretation of MI phe-
nomena in an acoustic resonator with an artificial crack-like defect. The effect is not reduced
to any of the aforementioned MI types and is of a different, essentially dissipative origin,
which can be common for waves of other physical nature as well. In acoustics, media con-
taining contacts or crack-like defects (e.g., rocks or damaged solids) constitute a wide class of
materials exhibiting strongly nonlinear behaviour. Their microstructure-induced nonlinearity
strongly differs from that related to weak anharmonicity of the interatomic potential. Along
with conventional nonlinear elasticity, these materials may manifest both quasi-static [11,12]
and dynamic [13,14] nonlinearity hysteresis and nonlinear thermoelastic absorption [15-17].
The acoustical MI reported here, exhibits a wealth of physically interesting features and is one
of the phenomena related to peculiar nonlinear properties of micro-inhomogeneous materials.

The effect discussed, unlike previous observations [4,7], did not imply multi-mode interac-
tions and could be observed in the absence of subharmonics. Clear experimental evidence has
been obtained that the effect is related purely to nonlinear dissipation, whereas eventual con-
tributions of the elastic nonlinearity and wave velocity dispersion are not essential in contrast
to [5,6]. Important features of the MI are reproduced in the proposed instructive theoret-
ical model, which generically has a certain resemblance, but does not reduce to equations
describing the Van der Pol self-excited oscillator and its synchronization by an external sinu-
soidal signal [8]. The physical reason of the MI is the amplitude-dependent period-averaged
self-transparency induced by the crack-like defect (although total losses still remain positive).

The resonators prepared were glass bars of 1cm in diameter and about 20cm in length
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Fig. 1 — (a) Schematically shown experimental setup. (b) FRF for 2nd longitudinal (Young) eigenmode
demonstrating induced transparency and exhibiting “jumps”. Excitation amplitude increased in
0.5 dB steps. Without nonlinear dissipation (no insert in the saw cut) the curves practically coincided.
(c) Example of temporal envelope waveform with well-developed self-modulation near resonator 4th
mode, and (d) the respective spectrum of the signal demonstrating absence of the decay instability
(subharmonics) accompanying the MI.
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cemented onto a backload via a piezo-actuator (see fig. 1(a)). A light accelerometer at the
free end of the bar provided the signal acquisition. About 1.5cm from the backload a saw
cut of 4mm in depth and 1mm thick was made. A small metal plate could be put in the
saw cut in order to create an artificial crack-like defect. Preliminary measurements confirmed
high linearity of the system without the inserted plate. With the plate inserted, as expected
from the nature of the crack-like defect [15,16], the acoustic response of the sample exhibits
pronounced amplitude dependence. The latter is usually characterized by the resonance-
frequency shift (due to the reactive part of the nonlinearity) and by the change in the quality
factor (due to the dissipative part of the nonlinearity). At certain positions of the insert,
the eigenmodes demonstrated a particularly interesting behavior in a rather wide (~ 10dB)
amplitude range: the resonance frequency remained almost unchanged while the quality factor
increased strongly (up to 2-3 times). An example is shown in fig 1(b) presenting frequency
response functions (FRF), that is the ratio of the accelerometer output to the excitation
voltage for several driving amplitudes near the second eigenmode.

Two non-trivial effects in this amplitude range can be pointed out. The first one consists
in abrupt vertical jumps in the FRF (visible in fig 1(a) at the flanks of the FRF curves)
indicating a switching of the system from one regime to another. The second interesting effect
is that the oscillations of the resonator under sinusoidal excitation can exhibit self-modulation.
The observed waveforms and their spectral compositions (see an example in fig. 1(c), (d))
demonstrate that this self-modulation happens without assistance of subharmonics, as well as
without essential multi-mode interaction and in the absence of noticeable reactive nonlinearity.
These features indicate a MI mechanism different from those considered earlier [1-10] including
those discussed previously in acoustics [4-7,9]. The described setup allowed the study of
the evolution of the self-modulation spectra as a function of the excitation amplitude and
frequency, these dependencies appeared to be qualitatively very similar. For example, the 3D
plot in fig. 2(a) presents a sequence of MI spectra exhibiting gradual variation of frequency for
the main modulation sidelobes and formation of peculiar cross-like structures of an additional
slower modulation, which depend on the driving amplitude.

The main observed MI features can be considered using an instructive 1D model of a
resonator with sinusoidally driven boundary. The solution is searched as superposition of
longitudinal eigenmodes. In the parameter range considered, the nonlinearity induced by the
defect can be reasonably modeled as purely dissipative due to experimentally documented
strong induced transparency and negligibly small nonlinear shift of the resonance frequencies.
The defect is accounted in the equation via a delta-localized dissipation operator depending on
the strain (or strain rate), which models the desired amplitude-dependent sound absorption.
Using conventional procedures [8], for instantaneous amplitude A(t) of any sinusoidally driven
resonator mode near its eigenfrequency wg, an oscillator-type equation can be obtained:

A+ 2wf(A)A+wiA=F(t). (1)

Here v is the dissipation coefficient in the small-amplitude limit, when the normalized non-
linear-dissipation function f(A) satisfies the condition f(A — 0) — 1. The main controlling
parameters wy and v (or quality factor Qo = wp/(2v)) could be readily estimated from the
shapes of the measured resonance peaks. The mode amplitude A is then searched in the form
A(t) = a(t) cos(wt + (t)), where a(t) and ¢(t) are the slowly varying amplitude and phase of
the oscillation driven by a sinusoidal force F(t) at frequency w and amplitude Fy. Substitution
of this representation into (1) yields via harmonic balance [8] the following equations:

ap + aAo = —Fy cos(p),

a+ af(a) = —Fysin(yp), (2)
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Fig. 2 — Evolution of the MI spectra vs. the driving amplitude and examples of a single spectrum.
(a) Experimental data; (b) numerical simulations using eqs. (2), which exhibit normalized frequency

scales of MI, 2, and transitional cross-like structures for series of MI spectra similar to experiment.

where Aw = (w — wp)/Awy/y is the normalized frequency detuning from the resonance,
Awy /s = wo/(2Qo) being its half-width. The time is also normalized t — wot/(2Q0) = Awy /ot;
Fo =2QoFy/ (wwp) is the normalized driving amplitude and the period averaged nonlinear dis-

sipation function f(a) depends only on even powers of a. For equilibrium points corresponding
to a =0 and ¢ = 0 system (2) yields the following equation:

a?f?(a) = (F2 — A@?a?). (3)

The right-hand side of eq. (3) depends on driving conditions (amplitude and frequency) and,
in the absence of reactive nonlinearity, 9(Aw)/da = 0, it represents a straight line in func-
tion of a? (below we denote it “loading line” L in fig. 3(a)). The left-hand side of eq. (3)
describes the nonlinear dissipative properties, that will be more convenient for graphical anal-
ysis to characterize by the function ®(a) = a f (a). This function exhibits a decreasing part
®'(a) < 0, if in a certain amplitude range the function f(a) locally decreases faster than a~'.
Characteristic variants of stationary points, determined by intersection(s) between the load-
ing line and dissipation function ®(a) are shown schematically in fig. 3(a). Stability analysis
of exponential perturbations o exp[At] for the linearized system (2) yields the characteristic
values

Ai = —[®/a+0®/da + /(D)a — 0B/0a)? — 4(Aw)2]/2. (4)
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Fig. 3 — (a) Schematically shown left- and right-hand sides of eq. (3) illustrating different variants
of equilibrium points. MI is possible within segment AB. (b) Corresponding structure of instability
zones and resonance curve shapes (unlike fig. 1(a) the curves are not normalized to the excitation
amplitude, and one-halves are shown with unstable parts indicated in dashed style). Dotted bound-
aries encounter zones of “jumps”, the inner oval-type curve is for beginnings and the outer curve is
for jump arrivals (see thick arrows in plots (a), (b)).

As is clear from fig. 3(a), at small A, there are always one or two intersections with increasing
parts of ®(a). These intersections in accordance with (4) definitely correspond to stable
equilibrium points that attract the system and prevent MI development (even in the presence
of an intersection with the descending part of ®(a)). Only at sufficiently large Aw and Fy,
there may exist a single equilibrium point at the descending part of ®(a) (see line L3 in
fig. 3(a)). However, according to eq. (4), even at the descending part the MI may develope
only in region(s), where ®(a)/a + ®(a) < 0, or equivalently [a®(a)]’ = [f(a)a?]’ < 0, which
indicates a decrease of f (a) faster than a=2. In the energy terms, since f (a)a? is proportional
to the energy dissipation rate (which is always positive in our system), condition [f(a)a?]’ < 0
corresponds to the locally negative differential energy dissipation.

The static equation (3) can be also considered as an implicit expression for the resonance
curves with stable and unstable branches. In fig. 3(b) such a single-valued and several multi-
valued curves are shown, for which the relation to the dissipation function plotted in fig. 3(a)
is indicated by dashed lines. In the multi-valued zone of a resonance curve, there are normally
three stationary amplitudes for given excitation parameters. The stability analysis (see eq. (4))
reveals that the two extreme equilibrium points are stable, while the intermediate third point
is unstable (saddle-type). For multi-valued resonances, the equilibrium amplitude exhibits
jumps at monotone variation either in excitation amplitude or frequency (for the latter case,
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such jumps are indicated by arrows in both plots in fig. 3). The jumps begin at the intersection
between the considered resonance curve and the inner filled-oval as indicated in fig. 3(b). Each
point inside that oval is unstable and the border of the filled-oval is the boundary of a saddle-
node bifurcation. The second oval-like region encounters the jump arrivals. Jumps between
stable parts of the curves constituted of two separate branches may happen only at eventually
strong enough perturbations. The MI zone, corresponding to single-equilibrium points located
within segment AB in fig. 3(a), is indicated in fig. 3(b) by the dashed pattern.

At the threshold points A and B (fig. 3) defined by the condition (®(a)/a+®'(a))|a,z = 0,
the imaginary part of AL readily gives estimates of the normalized modulation frequency
Q = Q/Awl/gl

D =/ (A0)2 — (¥'(a)| 4 5)2. (5)
At point A, the MI-threshold slope (A®)?Z ;. of the loading line is equal to the slope ®'(a)|4.

Then eq. (5) yields the estimate Q4 — 0. In the right boundary point B (in which ®'(a)|p <
®'(a)|a, but the threshold slope remains roughly the same as in point A in fig. 3(a)), eq. (5)
predicts that the near-threshold Qg is of the order of the half-width Aw, /5 of the resonance:

Qp = \JO — ;= s = fla)la~ 1. (6)

Experiments and direct numerical simulations based on eqs. (2) confirm prediction (6) of a
rather fast and shallow near-threshold modulation around one threshold (B) and very slow
and rather deep modulation in the vicinity of another threshold point A. The observed very
similar evolution of MI as a function of the excitation frequency and amplitude is thus readily
explained by the similar movement of the unstable equilibrium along segment AB due to
variation of either Aw or Fy (see fig. 3(a)).

Note that occurrence of an additional reactive nonlinearity of the system should introduce
amplitude dependence for the frequency detuning in the right-hand side of eq. (3), Aw =
Ao(a) (actually a slight shift of the resonance peak is visible in fig. 1). In such a case, the
straight “loading lines” should become curved. However, qualitatively this curvature does
not change the considered classification of the equilibrium points and does not cancel the
conclusion on the crucial importance of the induced transparency for the existence of MI,
although the MI-threshold values for Fy and A@ may be somewhat affected. Note further,
that eventual “steps” on the dissipation function (e.g. due to threshold activation of additional
contacts in the defect), may locally break within some part(s) of segment AB the differential
negative dissipation condition [a®(a)]’ < 0 necessary for MI develoment. However, this local
stability should manifest itself only for very special initial conditions sufficiently close to the
equilibrium. Numerical simulations confirm these conclusions and indicate that “globally”
instability of segment AB persists. Besides, for gradually varying Fy or A@, the intersection of
the loading line with the locally stable “step” may induce some transitional processes, which in
addition to the main relatively fast modulation cause the appearance of a co-existing slow self-
modulation. This additional modulation may disappear/reappear under monotonous variation
of either frequency or amplitude of the excitation. Both the experimental observations and
numerically simulated examples of a similar behavior are shown in fig. 2. For simulation in
eqs. (2) we used the dissipation function of the form f(a) = 1 — (3/4)a? + (2.7/16)a* with a
“step” inducing local near-neutral stability [a®(a)]’ =~ 0 at a = 1.22 £ 0.01 (threshold point
A in fig. 3 was scaled to a = 1).

Detailed discussion of the physical origin of the amplitude-dependent dissipation induced
by the crack-like defect is beyond the scope of the present letter. One of the possible mecha-
nisms (of a thermo-elastic type) was discussed in [15-17]: the acoustic transparency might be
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caused either by the wave-induced modification of energy dissipation at individual contacts or
by the disappearance of some of the sound absorbing contacts in the acoustic field of increas-
ing amplitude. Also at the same type of defects, similar effects could arise due to friction or
adhesion-type hysteresis (other hysteretic mechanisms may be relevant for waves of different
nature). Indeed, the complete saturation of hysteresis at higher amplitudes, may provide the
dissipation decrease as fast as a=2 (because the energy dissipation is saturated, whereas the
accumulated elastic energy in the material continues to increase as a?). Thus the considered
MI mechanism can operate for oscillations and waves of another nature, which also exhibit
sufficiently strong decrease in absorbtion with increase in amplitude (e.g. due to hysteresis
saturation); this dissipative nonlinearity may or may not be accompanied by reactive non-
linearity. Returning to the discussed acoustic case we may underscore that the experimental
setup with the artificial crack allowed us to realize the self-induced transparency in especially
clear form, practically without complementary elastic nonlinearity. It is worthy to note that
samples with natural cracks may also exhibit quite pronounced induced transparency [16].
However, real cracks are weakly controllable and reproducible, whereas the insert in the saw
cut used in the described expriments provided a much easier way to imitate and reproduce
different properties of cracks by slightly changing the insert position.

Artificial cracks similar to the one in the described experiments were succesfully used for
imitation of real cracks in studies related to diagnostic applications of nonlinear effects [18].
Note finally that MI phenomena qualitatively similar to those discussed above were also ob-
served for samples with real cracks [7].
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