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1. INTRODUCTION. KEY FEATURES 
IN THE OBSERVED MODULATION 

OF SEISMIC NOISE BY TIDAL STRAINS

The effect of the modulation of the intensity of
endogenous high!frequency seismic noise (HFSN) by
tidal strains of the Earth’s crust has been known for
over three decades. After its early observations
(Rykunov, Khavroshkin, and Tsyplakov, 1980; Dia!
konov et al., 1990) which still left doubts on whether
the observed HFSN variations are simply related to
the daily periodicity in technogenic factors or winds,
or fluctuations in the surface temperature, etc., the
tidal origin of these variations has been reliably estab!
lished by long!term careful measurements. This
HFSN monitoring was carried out in areas remote
from human activity (at the stations in Kamchatka,
Kuril Islands, and Hokkaido Island) (see, e.g.,
(Saltykov, Sinitsyn, and Chebrov, 1997; Saltykov et al.,
2002; Kugaenko et al., 2008)). The records were pro!
cessed by coherent summation of envelopes of noise
intensity within a moving window, with the aim to sin!
gle out periodic variations corresponding to the known
periods (Melchior, 1966) of waves of tidal deforma!
tions. The processing of temporal intervals several
months in duration yielded statistically reliable varia!
tions in the intensity of HFSN, with the typical mod!
ulation depth on the order of several percent and the
typical periods corresponding to different tidal com!
ponents (see the examples in Fig. 1).

In spite of the long history of observations, there is
no generally accepted explanation for the origin of the
HFSN modulation by tides. The main obstacle for
interpreting these data is the seemingly excessively
large depth of the effect (~10–2–10–1 ) compared to the
level of tidal strains with a typical amplitude of 10–8,
which affect the state of the rock. Although the
observed tidal variations in the velocities of seismoa!
coustic waves, which attain 10–5–10–3 (De Fazio, Aki,
and Alba, 1973; Reasenberg and Aki, 1974; Glinskii,
Kovalevskii, and Khairetdinov, 1999; Bogolyubov
et al., 2004), can be explained by the increased elastic
nonlinearity of rocks, which is reliably established, this
effect does not provide even a phenomenological
description for tidal variations in the intensity of HFSN,
which are by 2–4 orders of magnitude stronger.

Besides the level of tidal modulation of HFSN,
some phase and spectral features of this phenomenon
are also to be interpreted. For example, the data
yielded by long!term HFSN monitoring show that
over sufficiently large recording intervals, the modula!
tion phase is not rigidly fixed to the tidal phase. There!
fore, coherent accumulation of the modulation com!
ponent which corresponds to the selected tidal wave
first raises the signal!to!noise ratio and then, as the
accumulation time further increases up to half a year
and greater, reduces the depth of the observed modu!
lation, i.e., the modulation features a long!term phase
instability. It has been also noticed in many observa!
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Fig. 1. Variations in the HFSN level with the periods corresponding to tidal harmonics O1, Q1, M2, and N2 at four stations of HFSN
recording: Nachiki, Karmyshina, Shikotan, and Erimo. Solid line: least!square approximation of the points by the harmonic with the
period of the corresponding tidal wave. In the experiments, noise with the strain amplitude of the order of 10–13–10–11 (i.e., much
smaller than the typical amplitudes of tidal deformations of 10–8) was recorded. The narrow band seismic receivers with the central fre!
quency of 30 Hz and the Q!factor q = 100 were used (the figure from (Zaitsev, Saltykov, and Matveev, 2008b)).
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tions that before strong earthquakes there is an interval
of a pronounced stabilization of the modulation phase
(within 1–2 months). Near the time of an earthquake,
the phase typically swings by π radians, and then a
period of unstable behavior of the phase follows until a
new stabilization before the next earthquake. In addi!
tion, the ratio of the fundamental to the second har!
monics of modulation induced by a nearly sinusoidal
tidal!wave component is worth noting. The second
harmonic is sharply predominant in the vicinity of the
phase jump. The varying ratio of the harmonics and
the swinging phase against a stable tidal impact itself
unambiguously indicate that these variations are asso!
ciated with the properties of the medium, and their
analysis will probably provide additional information
to elaborate the model of this effect.

Figure 2 illustrates the features of modulation of
the intensity of HFSN at a frequency of 30 Hz by the
О1 component of the tidal deformation near the time
of the earthquake of January 1, 1996 with magnitude
M = 6.9, according to the data of Nachiki station

(Saltykov et al., 2009). Here, the phase of the enve!
lope, its first and second harmonics, and the ratio of
these harmonics are shown. As seen from Fig. 2a, the
phase of the wave changes by π radians in a nearly
jump!like manner in the vicinity of the earthquake,
when the tectonic stresses in the medium experience
the strongest variations. In this case, the first harmonic
exhibits a sharp minimum (Fig. 2b), while the second
harmonic remains at an almost constant level
(Fig. 2c). The ratio of the harmonics at this time has a
distinct maximum (Fig. 2d).

Similar features were also revealed in other obser!
vations of this kind. The interval of a stable phase of
modulation before the earthquake is likely the most
remarkable and almost always persistent feature of this
effect (for several dozens of earthquakes in the Kam!
chatka region since 1992) (Saltykov et al., 2008). In
most cases (although not always), the modulation
phase changes into the opposite phase after the earth!
quake (Saltykov, 1995).

Fig. 2. Time dependences for (a) the phase and (b) amplitude of modulation of the intensity of endogenous seismic noise with the
period of the tidal component O1, (c) the amplitude of the second modulation harmonic, and (d) the ratios of the first and second
harmonics. The time is measured from the moment of the earthquake on January 1, 1996. The averaging window is 28 days, the
current time is referred to the window center.
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2. MAIN REASONS FOR USING THE 
MECHANISM OF NONHYSTERESIS 

AMPLITUDE!DEPENDENT ABSORPTION 
FOR EXPLAINING THE MODULATION 

EFFECTS OF TIDES
At first sight, it seems quite natural to suppose that

the microfracture of rocks and the accompanying
acoustic emission are directly produced by weak tidal
deformations, which might be hypothetically assumed
for material which is in the immediate prefailure state.
Without completely rejecting this possibility, we note,
however, that this hypothesis does not seem quite jus!
tified as the only important factor to explain the large
body of accumulated observations conducted in rather
different conditions, in terms of the background stress
state of rocks. Indeed, the observations of tidal modu!
lation of the noise (like those described in (Saltykov,
Sinitsyn, and Chebrov, 1997)) were carried out in seis!
mically active regions where strong earthquakes are
common. In these studies, pronounced HFSV modu!
lation was observed at different phases of the seismic
process (both before and after earthquakes) when the
background stress in the rocks should have been dras!
tically different. In view of this, a more universal and
robust, in terms of the conditions for its existence,
mechanism is required for interpretation of the data
on tidal modulation obtained in such diverse condi!
tions.

It was shown in (Zaitsev, Saltykov, and Matveev,
2008a; 2008b) that the existence of amplitude!depen!
dent losses in the medium, which are sensitive enough
to the weak tidal deformations of rocks, is the probable
physical background behind this mechanism. Then,
even if the noise emission does not practically depend
on weak tidal deformations, variations in the losses in
the medium caused by these deformations should
induce modulation in the noise recorded by a seismo!
graph, because the tidal modulation of absorption
leads to the modulation of the effective size of the
region from which HFSN comes to the receiver. It was
also shown that, given the intensity of the sources in
the medium whose elastic!dissipative properties are
modulated by external factors, the relative variations in
intensity, I(ω), of the received noise are primarily deter!
mined by the changes in dissipation (attenuation θ):

(1)

In (Zaitsev, Saltykov, and Matveev, 2008b), such a
mechanism of HFSN modulation caused by the tide!
induced variations in the attenuation was analyzed in
terms of a rheological model assuming that there are
soft defect inclusions in the medium, which corre!
spond to the cracks in the rock. These defects are con!
centrators for dissipation (which is inherently linear,
i.e., has no threshold in amplitude) and for elastic
nonlinearity, whose coupled effect may appear as a
pronounced amplitude!dependent absorption (Zait!
sev and Matveev, 2006). According to estimates, this

( )

( )

.
I

I

∆ ω ∆θ

≈ −

ω θ

mechanism can provide good agreement with the
observed amplitude of tidal modulation for both artifi!
cial sources (Glinskii, Kovalevskii, and Khairetdinov,
1999; Bogolyubov et al., 2004) and endogenous
HFSN (Saltykov et al., 2002; 2006). In the context of
the model proposed in (Zaitsev, Saltykov, and
Matveev, 2008a; 2008b), it was shown also that, given
the value of the quasi!static tidal strain, ε0, the relative
variations in the attenuation hardly depend on the
concentration of defects and are only determined by
their own nonlinearity and the parameter of their
effective softness, , relative to the ambient homo!
geneous matrix. In the model, for the typical tidal
strain ε0 ~ 10–8, the consistence with the observed mod!
ulation depth (a few to a dozen percent) for both the
amplitude of the fields of artificial seismoacoustic
sources (Glinskii, Kovalevskii, and Khairetdinovv,
1999; Bogolyubov et al., 2004) and the variations in
intensity of HFSN (see (Saltykov et al., 2002; 2006)
and examples in Fig. 1) was achieved assuming the
effective parameter of softness ζ of defects at least as
small as 10–5–10–6. It is typically believed that the
characteristic softness ζ of a crack, which is under!
stood as the average strain in the material at which the
crack completely closes, is approximately equal to the
crack aspect ratio α (i.e., the ratio of characteristic
opening of a crack to its diameter). Therefore, in order
to achieve such small values of ζ, one must assume
unrealistically thin cracks to exist in the medium. In
addition, due to their high softness, such cracks should
close by the overburden pressure at depths as shallow
as a few meters. This problem has already been men!
tioned in (Reasenberg and Aki, 1974) when interpret!
ing the huge elastic nonlinearity of rocks, which corre!
sponded to the observed tidal modulation of elastic
velocities.

In relation to this paradox, it was shown in (Zaitsev,
Saltykov, and Matveev, 2008a) that variations in the
elastic!dissipative properties of the crack, which are
comparable in value with the case of complete closure
of the crack, can also be due to the deformation on the
internal contacts which exist in the real cracks whose
state may substantially vary even if the crack opening
has only insignificantly changed. In this case, in terms
of variations in the elastic!dissipative properties, the
effective values of the softness factor ζ on the order of
10–6–10–7 can be attained for cracks with quite feasible
aspect ratios α ~ 10–5–10–3. Such average values of α
allow the cracks to remain open at rather high average
strains in the medium exceeding ε ~ ζ ~ 10–6–10–7. In
what follows, we will consider how to interpret not
only the observed intensity of the modulation effect
but also the mentioned features in the phase behavior
and the spectral composition of this effect in the con!
text of the dissipative mechanism of tidal modulation
of HFSN, as proposed in (Zaitsev, Saltykov, and
Matveev, 2008a). Instead of the rheological approach,
we will apply in our analysis the physical models of dis!

1ζ !
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sipation expected to occur in the real corrugated
cracks with internal contacts.

We consider two cases that are most important for
rocks, namely, dry cracks with internal contacts at
which the elastic energy is efficiently dissipated due to
the thermoelastic mechanism, and cracks with similar
geometry saturated with a fluid. It will be shown how
the allowance for these geometrical peculiarities of
cracks suggests the possibility of strong variations in
losses on such cracks. Besides, we will discuss how
these variations can explain the above!mentioned fea!
tures in the phase behavior and spectral composition
of the tidal modulation of HFSN.

In order to find the attenuation θ of an elastic wave
(related with the material quality!factor Q as θ = π/Q),
we make use of its well!known correlation with the
density of the accumulated energy, Wel, and the energy
dissipated in the medium during the period of fluctua!
tion, Wdis:

. (2)
When determining Wel, we take into account that the
elastic energy is accumulated, primarily, in the homo!
geneous matrix material, and the dissipation Wdis is
predominantly contributed by microstructural
defects; therefore, the losses in the homogeneous
matrix are negligible.

2.1. The Expected Features of Modulation 
of Endogenous HFSN Caused by Thermoelastic 
Absorption on Internal Contacts in Dry Cracks

Following the works (Zaitsev, Gusev, and Cast!
agnede, 2002; Zaitsev et al., 2005; Fillinger et al.,
2006), we note that cracks are planar defects in a solid,
which have a small aspect ratio  (the typical
values are h/L ~ 10–4–10–3) and, thus, for a crack to
fully close, the average strain in the material should be
on the order of  This estimate weakly depends on
the details of the crack model (Mavko and Nur, 1978)
and substantially (by 1–2 orders of magnitude)
exceeds the typical amplitudes of elastic strains ε ~
10–7–10–5 at which nonlinear!elastic and dissipative
effects become clearly distinct. In the further consid!
erations, the fact that the cracks usually have wavy sur!
faces (i.e., the irregularities are shaped as extended
rolls rather than as point asperities and notches) will be
of crucial importance. This pattern of irregularity of
the crack surfaces is confirmed by the crack images
provided by the optical, electron, and atomic!force
microscopy; and it agrees with the known models of
crack formation. When a crack is formed, its wavy sur!
faces which initially coincided do not simply diverge
along the normal retaining parallelism, but shift tan!
gentially, thus facilitating the formation of internal
contacts (or waists) which are predominantly shaped
as extended stripes (as schematically shown in Fig. 3)
rather than as point!like structures. In the vicinity of
the contacts, the local distance between the crack

( )2dis elW Wθ =

1h L !

.h L

faces (or their interpenetration)  is much smaller
than the average crack opening h. Therefore, the area
near the contact is much more sensitive (approxi!
mately by a factor of ) to the external stress
than the crack as a whole. That is, the state of such
contacts can be substantially changed by the action of
average strains which are by the several orders of mag!
nitude smaller than those required for a complete clo!
sure of the crack, e.g., 

The question arises, whether such small contacts
(compared to the entire crack) can substantially affect
the absorption of acoustic energy even when there is
no complete opening/closure of the contact and, as a
result, the adhesive!frictional losses do not yet effec!
tively show up (Gordon and Davis, 1968; Sharma and
Tutuncu, 1994). For the discussed small deformations
typical for HFSN, the mechanism of effective dissipa!
tion due to thermoelastic losses locally increasing on a
crack is well!known. Indeed, if there are stress and
strain heterogeneities in the medium, the gradients of
temperature variations are determined by the typical
scale of heterogeneities, Lhet, which are far smaller
than the elastic wave length, or by the thermal wave
length λtherm (Landau and Lifshits, 1978). When the
crack scales Lhet and λtherm coincide, global losses (i.e.,
those on the crack as a whole) of the elastic energy
reach their maximum as shown in (Savage, 1966) by
the exact solution for elliptical cracks. By applying the
approach described in (Landau and Lifshits, 1978) to
the losses in polycrystals, one can determine the ther!
moelastic losses without specifying in detail the crack
model and estimating the temperature gradients both
on the crack as a whole and on the internal contacts of
the crack (Zaitsev, Gusev, and Castagnede, 2002; Zait!
sev et al., 2005; Fillinger et al., 2006). The result for
global losses on the crack found in this way agrees with
(Savage, 1966); and we obtain the following approxi!

h!

1h h! "

4~ ~ 10 .h L −

ε

~L

(а)

(b)
h

l << L

Lc " L

Fig. 3. A crack with wavy surfaces (a) without an internal
contact and (b) with a stripe contact with the sizes Lc × l.

At , the stripe contact becomes a point contact.cL l→
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mate expression for the attenuation  associated
with thermoelastic losses on the internal stripe con!
tacts (with width l and length Lc in a crack with the
characteristic diameter L) for cracks with identical
parameters and concentration  (Zaitsev and
Matveev, 2010a):

(3)

where, ω is angular frequency, Т0 is temperature,  is
the coefficient of volumetric thermal expansion, K is
the bulk modulus, ρ is the density of the medium, C is
the specific heat (per unit mass), κ is the thermal con!
ductivity, and ωl is the characteristic frequency of ther!
mal relaxation corresponding to the width of the con!
tact, l.

It is instructive to compare this result with that
obtained in (Savage, 1966) for thermoelastic losses in
the region of stress concentration on the perimeter of
the crack. In (Savage, 1966), the maximum is observed
at a far lower frequency ωL ≈ κ/(ρCL2

) ! ωl. The com!
parison shows that for a narrow (l ! L) stripe contact
with the length Lc ~ L, the losses near the maximum
observed at ω ≈ ωl are comparable with the maximum
losses on the entire crack attained at ω ≈ ωL; they are
determined by the cubed size of the entire crack, L,
although the frequency values themselves (ωL and ωl)
differ by several orders of magnitude.

The following important features of the obtained
relaxation dependence (3) in the case of thermo!elas!
tic absorption on the internal contact in a crack are
worth highlighting. It follows from the structure of this

,therm
θ
!

crn!

( )

( )

2 2
0

2

2

2 ,
1

,

therm lT c
cr

l

l

T KL L n
C

Cl

ω ωπ µ
θ =

ρ + ω ω

ω ≈ κ ρ

!

!

Tµ

expression that the amplitude of the relaxation maxi!
mum and its position on the frequency axis are deter!
mined by substantially different parameters; the
amplitude and the position can turn out to be almost
independent, and a relatively small variation in the
average opening of a crack results in a change in the
width of the stripe contact without substantially
changing its length. Such changes of the relaxation
frequency ωl (due to variations in the width of the con!
tact) cause the absorption maximum to shift almost
without changing its height, as schematically shown in
Fig. 4 (curves 1 and 2). It is seen from the figure that
with this shift of the peak, variations in the absorption
for the waves with the frequencies ω > ωl and ω < ωl
have opposite signs (curve 3 in Fig. 4). In other words,
a minor, nearly sine!shaped change in the position of
the maximum (e.g., caused by tidal deformations) for
the waves with frequencies ω > ωl and ω < ωl should
induce modulation of the absorption with opposite
phases (shifted by π radians). While the selected obser!
vation frequency ω initially lies on one side of the
maximum, in the case of a sufficiently strong shift in
its average position (e.g., due to the action of stronger
tectonic stresses), it may occur on the other side of the
maximum. As the result, the initial phase of the tidal
modulation of such a wave should change into the
opposite one. The rheological models of the ampli!
tude!dependent absorption considered earlier (Zait!
sev et al., 2006; Zaitsev, Saltykov, and Matveev, 2008a)
were unsuitable for a correct consideration of such
features of absorption, although they still allowed one
to estimate the level of the expected variations in
absorption associated with the effect of tidal deforma!
tions.

For the mentioned features of absorption on inter!
nal contacts in the cracks to be used for the interpreta!
tion of the tidal effect, it is of crucial importance to
estimate to what extent the tidal and background tec!
tonic stresses and strains will affect the position ωl ≈
κ/(ρCl 2

) of the relaxation maximum of thermoelastic
absorption. To do this, we consider how the width of
the internal stripe contact in a crack varies under the
action of the average strain in the host material. We use
the solution provided in (Landau and Lifshits, 1987)
for the width of the contact area between two aligned
cylinders with the radii R and R' made of the same
material, which touch each other:

(4)

where,  σ is Poisson’s ratio, E is
the elastic modulus of the material of the cylinders,
and F is the compressive force per unit length of the
contact. Taking into account that σ2 ! 1, it can be
assumed with the same accuracy at which Eq. (3) was
obtained that   and the linear force
F is related with the length of the stripe contact Lc and
the force Fc acting on the internal contact in the crack

( )
1/216 '2 ,

3 '
DF RRl

R R
≈

π +

( ) ( )
23 2 1 ,D E= − σ

( )3 2 ,D E≈ ',R R≈

0.1
–0.1

1 10

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

ω ωl⁄

θ
∆
θ

,

12

3

Fig. 4. The curves of relaxation absorption of type (3) in
case of identical contacts: (1) the unperturbed curve at the
background average strain ε0 (corresponding to the first
term in Eq. (10)); (2) the perturbed curve whose maximum
is shifted by 10% along the frequency axis; (3) the fre!
quency dependence of the correction to the initial curve.
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by the formula  Then, it follows from
Eq. (4) that

(5)

Fillinger et al. (2006) obtained the approximate equa!
tion for force Fc acting on the internal contact in the

crack: Fc ≈  where ε is the average strain in

the host material. Hence, taking into account Eq. (5),
the following approximate equation is derived:

(6)

In Eq. (6), it is taken into account that
 so that the term before εRL is on

the order of unity and weakly depends on the length of
the contact, Lc. Hence, the relative variation in

 (or ) is related to the variation ∆ε of
the average strain by the following formula:

(7)

In order to quantitatively estimate the strain sensitivity
of relative variations in l2 (and, correspondingly, ωl ≈
κ/(ρCl 2

)), we take into account that the asperities on
the crack faces often have a radius comparable with the
characteristic size of the entire crack R ~ L, and the
width, l, of the appearing contact does not typically
exceed the average opening of the crack, h. Therefore,
with the characteristic values of the aspect ratio for
thin cracks h/L ~ 10–3–10–4 , as discussed above, the
term RL/l2 in Eq. (7) can attain 106–108. Therefore,
tidal strains as small as 10–8 may change the position of
the relaxation maximum for the contacts (and, corre!
spondingly, the value of the attenuation for the
selected frequency component) by a few (and even
tens) of percent.

Even greater (by several orders of magnitude) vari!
ations in the state of the contacts should be expected to
be produced by tectonic stresses and strains that
develop near the source of the earthquake. According
to (Dobrovol’sky, 1991), the tectonic strain in the
vicinity of the source region of the impending earth!
quake is linked with the magnitude of the event M > 5
by the following approximate relation:

(8)
where the distance R is measured in kilometers. The
estimates based on Eq. (8) show that the tectonic
strains attain 10–6–10–5 for the sources of earthquake
with magnitude 5 ≤ М ≤ 7 at a distance of 100–200 km
from the source. Thus, if, due to the earthquake, the
average strain changes by such a value, this could be
sufficient even to almost completely open/close the
internal contacts and, thus, to change the relaxation
frequency ωl ≈ κ/(ρCl 2

)) severalfold and greater. As a
result, the observed frequency component of the
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HFSN, which initially lay on one side of the maxi!
mum, after the earthquake, could be shifted on the
other flank of the absorption curve, which will change
the phase of tidal modulation into the opposite phase.

For comparison with observations, it is important
to estimate the range of the expected positions of the
relaxation maximum ωl ≈ κ/(ρCl2

)) on the frequency
axis. To do this, we use the parameters for quartz
which is a typical component of many rocks. In this
case, κ = 0.015 W/cm/K, ρ = 2.6 g/cm3, and C =
0.7 J/g/K. For various widths of contacts, the corre!
sponding frequencies will be ωc ~ 1 rad/s, 102 rad/s,
and 104 rad/s at l ~ 10–1 cm, 10–2 cm, and 10–3 cm,
respectively. Thus, the internal contacts with a width
of the order of hundreds of micrometers (which seems
to be reasonable value for the discussed situation) can
indeed provide a contribution to the amplitude!
dependent absorption, which is sufficient for relative
variations in the attenuation caused by tidal deforma!
tions to attain the level of several percent. In this case,
the tectonic stresses can cause the relaxation maxi!
mum to occur in the frequency range of the order of
several tens of hertz and to broadly vary relative to the
30 Hz frequency that was used in the discussed obser!
vations like those described in (Saltykov, Sinitsyn, and
Chebrov, 1997; Saltykov et al., 2002; 2006; 2008).

Another important problem is as follows: whether
the conclusions concerning the opposite!sign varia!
tions in the absorption on different sides of the relax!
ation maximum during its shift, which were obtained
for a single contact, are valid for an ensemble of the
contacts distributed in the parameters, which should
be the case in real rocks. Assuming that the distribu!
tion of contacts over the length Lc and the width l in the
cracks with diameter L is described by the function
n(L, Lc, l), in order to determine the total attenuation
due to thermoelastic losses, we obtain from Eq. (3):

(9)

As already noted, tidal deformations should primarily
affect the width, i.e., the characteristic frequencies
ωl ≈ κ/(ρCl 2

)), rather than the size of the crack as a
whole and, correspondingly, the length of the stripe
contacts. Therefore, the width of the contacts l should
be essentially independent of L and Lc, so that the func!
tion of the distribution of the contacts in the parameters
should be factorized, n(L, Lc, l) = n(L, Lc)n(l). In this
case, integration with respect to the crack size and to
the length of a contact yields the effective height of the
relaxation maximum, which turns out to be almost
independent of tidal deformations. The width of the
relaxation maximum and the character of variations in
the position of the absorption curve (either with or
without self!intersection), which are associated with
the changes in the average strain, are determined by
the distribution of contacts in width l, i.e., by the dis!
tribution in the characteristic frequency ωl of the max!
imum. Further, it is convenient to use the quantity
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inverse to ωl, i.e., the relaxation time τ = 1/ωl ≈
ρCl 2/κ ∝l2 proportional to the squared width of con!
tacts, and to characterize the contacts by the distri!
bution n(τ) over the relaxation times.

For the weak tidal variations discussed, it can be
assumed that the distribution function describes a cer!
tain initial state of the ensemble of the relaxators–
contacts (i.e., it is assumed to be deformation!inde!
pendent), while the parameters of the individual relax!
ators (in the case considered, their relaxation times)
depend on the deformation of the medium but do not
change very much. In this case, parameters L and Lc of
the relaxators can be assumed constant, and the strain
dependence can be taken into account in terms of the
dependence of ωl (or τ = 1/ωl ≈ ρCl 2/κ) on the varia!
tions in the average strain relative to the initial value ε0.
Thus, taking into account Eq. (3) in combination with
Eqs. (7) and (6), we obtain the following expression:

(10)

Finally, taking into account the above!mentioned pos!
sibility of factorization of the distribution, we obtain

(11)

where the distribution in the relaxation times n(l) is
used instead of the distribution in the width of the con!
tacts n(τ).

Curve 3 in Fig. 4 shows that the variation in the
attenuation described by the second term in Eq. (11)
has different signs on the different sides of the maxi!
mum for the case of identical contacts (i.e., for a Dirac
delta distribution in all parameters). Let us show that
this character of the variation in absorption is stable
enough with respect to the law of distribution of the
contacts in the parameters. It is seen from the struc!
ture of the factorized integral (11) that the shape of the
distribution  does not affect the frequency
behavior of the attenuation. The latter is controlled by
the shapes of individual absorption curves for each
relaxator–contact and by the form of distribution 

(we note that since , there is a simple relation

( ) ( ) ( )

( )

( )

0 0

0

0

0

0

2 2 2

2 2

2 2 22 2

2 2

2 2 22 2

1 1 1

1

1 1

1
.

1 1

d
d

d
d

C RL

ε ε ε

ε

ε

ε

ε

ωτ ωτ ωτ
≈ + ∆ε

ε+ ωτ + ωτ + ωτ

ω − ω τ
ωτ τ

= + ∆ε

ε+ ω τ  + ω τ
 

ω − ω τ
ρωτ

= + ∆ε

κ+ ω τ  + ω τ
 

( )

( ) ( )

( )

( )

( ) ( )

2
20

2

2 22
20

2 22 2

2 ,
1

12

1

, ,

T
c c c

T
c

c c

T K L L n L L n dLdL d
C

T K RLL L
C l

n L L n dLdL d

π µ ωτ
θ = τ τ

ρ + ωτ

ωτ − ω τ
π µ  

+  
ρ  

+ ω τ

× ∆ε τ τ

∫

∫

( ), cn L L

( )n τ

2lτ ∝

with the distribution in the width of the contacts:
n(l) = n(l2)2l ∝ n(τ)τ1/2). Unfortunately, as of now,
there seem to be no direct data on the size distribution
of contacts in cracks, although the sizes of the cracks
themselves and the scales of asperities on the surfaces
obtained by cleaving the rock samples are known to
obey a power law (Bonnet et al., 2001; Scholz, 2002).
Therefore, it seems reasonable to assume the distribu!
tion function n(l) of the width of contacts to follow
apower law, too. Thus, n(τ) will also have the power!
law distribution. A power!law distributions should be
bounded from above and from below. The minimal size
of the contacts should be constrained due to the action
of short!range intermolecular forces, as discussed in
many works addressing the investigations of elastic
properties of granular rocks (Murphy, Winkler, and
Kleinberg, 1986). This scale limit is likely to be of the
order of a few micrometers. The maximum width of
the contacts is assumed to be far smaller than the size
of the entire crack. To illustrate the robustness of the
discussed sign!alternation feature of the correction to
the absorption, we consider the power!law distribu!
tions in the form  for essentially different p =
2, 1, –1, –2, –3, –4. In the examples shown in Fig. 5
(normalized in the ordinate), the integration was car!
ried out within , i.e., the width of the dis!
tribution covered two orders of magnitude. As seen in
Fig. 5, similarly to the case shown in Fig. 4 for the
Dirac delta distribution, the character of the correc!
tion, which depends on the average strain, remains
sign!alternating in all these distributions, which are
very diverse and rather wide.

Thus, the above!discussed frequency properties of
the thermoelastic absorption on the internal contacts
in cracks are rather robust and do not require any spe!
cial type of size distribution of the contacts. Here, the
fact that the height of the maximum of relaxation
absorption on a contact (determined by the size of the
entire crack and the contact length) is independent of
the position of this maximum on the frequency axis
(determined by the width of the internal contact vary!
ing under control of the average strain) is of key
importance. Of course, other cracks that do not have
contacts must also contribute to the total absorption,
so that the total absorption must experience somewhat
weaker changes than the contribution of the soft con!
tacts themselves. The required share of cracks with the
favorable peculiarities will be further estimated after
the discussion of another important case of structural
defects, namely the fluid!saturated cracks.

2.2. The Expected Features of Modulation 
of Endogenous HFSN Due to Viscous Absorption

on Fluid!Saturated Cracks with Irregular Surfaces

We focus on one more mechanism relevant for the
discussed issue, namely, the local squirt!type losses in
cracks containing a viscous fluid (Walsh, 1969;

( )
pn τ ∝ τ

[0.1,10]ωτ∈
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O’Connell and Budiansky, 1977; Johnston, Toksoz,
and Timur, 1979; Mavko and Nur, 1979; Murphy,
Winkler, and Kleinberg, 1986; Pride, Berryman, and
Harris, 2004). These losses can be expected to be suf!
ficiently highly sensitive to the average stresses, as dis!
tinct from the other, often!discussed, viscous losses
associated with the global flows in a porous medium
(the Biot–Frenkel mechanism) with the pore chan!
nels that almost do not change their shapes. Those vis!
cous losses due to global flows are unlikely to strongly
depend on the weak average strains in the medium.

When estimating the squirt losses for sufficiently
low oscillation frequencies, the fluid motion can be
approximated in terms of the model of incompressible
fluid; thus, as frequency increases, the velocity gradi!
ents in the flow and the viscous losses will also
increase. At sufficiently high frequencies, the change
in the fluid volume due to compressibility becomes
substantial, which cause the velocity gradients in the
flow and the corresponding viscous losses to decrease
again. Due to this, for viscous losses, a characteristic
relaxation maximum is formed at some frequency
determined by the geometrical parameters of the
channel (the crack), as well as by the viscous proper!
ties and compressibility of the fluid (Johnston, Toksoz,
and Timur, 1979). Here, the assumption of the com!
pressibility of the fluid to be far lower than that of the
host rock is typically, valid. For example, based on
such kind considerations, a rather cumbersome
expression was obtained in (Johnston, Toksoz, and
Timur, 1979) for the losses in the case of a squirt!type
flow of pore fluids from thin cracks to the ambient
porous channels. In the vicinity of the above!men!

tioned maximum (in the frequency range lower than
MHz), this expression is well approximated by the
standard relaxation dependence which is functionally
identical to that considered above for thermoelastic
losses:

(12)

The corresponding relaxation time  is deter!
mined by the following equation (Johnston, Toksoz,
and Timur, 1979):

(13)

where Кf is the bulk modulus of a fluid, η is viscosity,
and α ≈ h/L is the aspect ratio of a crack. Just as in the
case of thermoelastic losses on the crack as a whole, in
order to cause the parameters of the relaxation maxi!
mum to change noticeably, one should substantially
change the average opening of the crack. This requires
the average strains of the order of ε ~ α, which means
that even very thin cracks with α ~ 10–3–10–4 are still
too rigid to substantially change the value of viscous
absorption under the action of tidal strains of the order
of ε ~ 10–8. In addition, for the characteristic value of
the relaxation maximum, it follows from Eq. (13) that
with  N/m2 and η = 10–3 Pa s, which

are typical values for water,  rad/s. Even for
very thin cracks with α = 3 × 10–4, we obtain the char!
acteristic frequencies  rad/s, which is signifi!
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Fig. 5. Normalized frequency dependences of the correction to the attenuation for different distributions of ( ) .pn τ ∝ τ



960

IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 47  No. 11  2011

ZAITSEV et al.

cantly higher than the frequency of 30 Hz used in the
discussed observations of HFSN.

Thus, neither the traditionally considered squirt!
type viscous losses on the crack as a whole nor the tra!
ditional global model of thermoelastic losses (Savage,
1966) possesses the properties necessary for explaining
the effects of tidal modulation. Now, we take into
account the same geometrical peculiarities of the real
cracks which have been mentioned above when ana!
lyzing the modified mechanism of thermoelastic
losses. We consider how these peculiarities modify the
viscous dissipation due to local flows inside cracks.
The key role here is again played by the above!dis!
cussed wavy asperities on the faces of real cracks,
which can form waists that almost cover the entire
cross section of a crack. If there is such a thin waist in
the crack, in its vicinity the viscous losses associated
with the locally increased gradients of velocity and
pressure in the flow are localized and, as a result, the
characteristic relaxation frequency of viscous origin
drastically changes. Similar to the contraction of con!
tacts in the case of thermoelastic losses, the opening of
a crack in the vicinity of the thin waist can be far more
sensitive (by 2–3 orders of magnitude) to the average
strain of the host material. Therefore, tidal deforma!
tions with ε ~ 10–8 are capable of drastically changing
the parameters of the flow near the waist, although the
variations in the average crack opening are still negli!
gible.

A crack with a local narrowing almost completely
covered by a strip contact is schematically shown in
Fig. 6. The notations for the geometrical characteris!
tics are evident from the figure. The values Pi charac!
terize the pressure in the corresponding cross sections.
Using an approach similar to that described in
(Johnston, Toksoz, and Timur, 1979) and modifying it
so as to allow for the variations in the character of the
fluid flow, which are introduced by the stripe contact

almost completely spanning the crack, one easily
obtains the modified approximate equation for the
relaxation time  (Zaitsev and Matveev,
2010b):

(14)

Here, the aspect ratio  is explicitly factored
out for comparison with Eq. (13). It follows from
Eq. (14) that, if there is no waist in the crack (which
corresponds to  and  so that

( ), this equation yields 
which, within the used approximations (accurate
within the terms on the order of unity) can be consid!
ered coinciding with Eq. (13).

The presence of a thin waist corresponds to the case

 thus, the relaxation frequency corre!
sponding to Eq. (14) significantly decreases compared
to the value (13) for cracks without a waist and passes
from the ultrasonic range to the range of 1–100 Hz
which is of interest for us. Evidently, the position of the
relaxation maximum (14) is also much more sensitive
to the average strains in the host material since it
depends primarily on the local opening  in the region
of the waist rather than on the average opening 
of the crack.

In order to more accurately analyze the changes in
the curve of relaxation absorption (in particular, to
find out whether a self!intersection occurs here as in
the case of thermoelastic absorption on the contacts),
one should consider the modified equation for attenu!
ation for the discussed mechanism of viscous losses in
cracks with stripe contacts. Assuming the the Poi!
seuille flow (which is not necessarily the case for insuf!
ficiently thin cracks (Mavko and Nur, 1979) but holds
much better in the region of a thin waist) and by con!
ducting direct summation of viscous losses throughout
the volume of the flow, one easily finds the asymptotic
equations for losses for the frequencies far above and
far below the characteristic frequency of relaxation,
which is associated with compressibility of the fluid
(Zaitsev and Matveev, 2010b). Then, by matching the
obtained low! and high!frequency asymptotic equa!
tions, one obtains the relaxation dependences similar
to the thermoelastic curve (3) for the attenuation θ and

 caused by viscous losses in cracks without and with
a waist, respectively:
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where  for the cracks without a waist and
 for the cracks with a waist are defined by

Eqs. (13) and (14);  and  correspond to the con!
centrations of cracks with and without a waist, respec!
tively. It should be emphasized that, just as in the case
of thermoelastic losses on a stripe contact intersecting
the entire crack ( ), the maximum value of losses
localized near the waist coincides with the maximum
value of global losses on the entire crack without a
waist; and it is determined by the total crack’s size
cubed. At the same time, the positions of the maxima
on the frequency axis strongly differ. As in the case of
thermoelastic losses on a narrow contact, the position
of the maximum in the case of a crack with an waist is
much more sensitive to the average strain. Bearing in
mind that the absolute variations are equal, ,
and taking into account at for crack strain

 for own crack strain, we find that in
the presence of a waist, the relative variations in the
position of the maximum caused by the changes in the
average strains are as follows:

(17)

This equation is a counterpart of Eq. (7) for ther!
moelastic losses in dry cracks. From Eq. (17), we again
see that minor variations in the average strains can
bring about noticeable changes in the position of the
relaxation maximum since  For exam!

ple,  ~ 3 × 106 for  and 
therefore, the tidal deformations with the amplitude ε =
10–8 should generate variations in  on the
order of 3% and, as a result, a peak!to!peak variation
of 6%.

All conclusions that follow from the significantly
different role of the parameters L and l in the case of
thermoelastic losses are also valid for the relaxation
maximum in Eq. (16), the height of which is con!
trolled by the size L of the entire crack, while the fre!
quency is determined by the local opening  in the
vicinity of the waist. In particular, the conclusion on
the different!sign variations in the attenuation on dif!
ferent sides of the maximum of the relaxation curve in
the case of shifting the position of the maximum under
the effect of average strains also holds true. In addi!
tion, due to the functional analogy between Eq. (16)
for the local viscous absorption in the region of the
waist and Eq. (3) for local thermoelastic losses on a
stripe contact, all considerations (with the width l of
the contact replaced by the value of the local opening

) regarding a weak influence of the distribution in 
on the character of variations in attenuation remain
valid. This means that the alternating!sign variations
in the attenuation depending on the mutual position
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of the frequency of the relaxation maximum and the
observed harmonic component of the signal takes
place for fluid!saturated cracks as well. Thus, strong
variations in the background tectonic stress can lead to
a shift in their relative positions and change the phase
of the tidal modulation into the opposite phase.

Now, we turn back to the questions on importance
of the role of the background (almost independent of
tidal deformations) absorption introduced by the
cracks without a waist, and how big should be the share
of cracks with favorable internal contacts for their
influence to be sufficient to explain the observed tidal
effects. To find the answers, one should compare the
background contribution to the attenuation from the
cracks without narrowings, which have the concentra!
tion , in the frequency interval close to the relax!
ation frequency of the favorable cracks with narrow!
ings, which have the concentration  Here, we allow
for the fact that for equal!sized cracks with and with!
out narrowings, the heights of the relaxation maxima
almost coincide (see Eqs. (15) and (16)), although the
maximum corresponding to the cracks without a nar!
rowing occurs at a much higher frequency. Thus, at the
observation frequency , we can use the
low!frequency asymptotic form of Eq. (15) for the
attenuation in cracks without a waist:

(18)

It follows from Eqs. (18) and (16) that at , the
ratio of the contributions to the attenuation from
equal!sized cracks with and without waists are deter!
mined by the expression

(19)

where  (and the typical value of this fre!
quency ratio may exceed two orders of magnitude).
Thus, even a small fraction of cracks

 with a waist should be sufficient
for their contribution to dominate and provide a high
degree of sensitivity of absorption in the vicinity of the
frequency  to very weak variations in the average
strain in the rock.

Similar estimates can also be obtained for the ther!
moelstic absorption. In this case, for the cracks with
the size  without contacts, one should use the
high!frequency asymptotic approximation because

. Then, for such global thermoelastic losses on
a crack with the size L the approximate equation for

 has the following form (Zaitsev, Gusev, and
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Castagnede, 2002; Zaitsev et al., 2005; Fillinger et al.,
2006):

(20)

where  is the concentration of cracks without con!
tacts. This contribution should be compared with
Eq. (3) in the vicinity of the relaxation frequency for
the contacts ω ~ ωl. Evidently, for the stripe contacts
with Lc ≈ L, the contributions of the background
absorption due to global losses on the crack as a whole
and the losses on the contacts become comparable as
early as when the relative fraction of cracks with con!
tacts  For L/l ~ 102, which seems
quite realistic, the conclusion follows that the attenu!
ation is largely dependent on the average strains in the
vicinity of the discussed frequencies when the share of
the favorable cracks with internal contacts is as small
as a few percent of the total number of cracks.

3. DISCUSSION

We have considered two dissipation mechanisms,
most important for cracks, which do not have ampli!
tude thresholds and are therefore fully applicable to
the NFSN with small strains of 10–13–10–11. Our anal!
ysis, in which the stripe irregularities (contacts and
waists) existing in real cracks are taken into account,
suggests that tidal deformations can induce variations
in the attenuation from a few to tens of percent. This
can ensure similar!level modulation of the intensity of
the received HFSN, which is associated with varia!
tions in the size of the effective area from which noise
is acquired by the receiver. A very small fraction of
cracks with favorable characteristics of the total num!
ber of cracks is sufficient to provide the intensity of the
effect typically observed in the range of dozens of
hertz. In case of the thermoelastic mechanism, a few
percent of such cracks is sufficient, and an even
smaller fraction is necessary in the case of fluid!satu!
rated cracks.

The similar qualitative (functional) features of
thermolelastic and viscous relaxation indicate that the
phase shifts by π radian are probable in the phase of
modulation, depending on the relative position of the
relaxation maximum and the selected frequency of
observations. These features are sufficiently robust to
the shape of the crack distribution over the parameters.

Thus, the changes in the phase of modulation by π
radians observed in the vicinity of many earthquakes
can probably be explained by a substantial shift of the
relaxation maximum (relative to the fixed frequency of
observations) caused by the strong changes in the
stressed state of the medium after the earthquake.

The effect of stabilization in the phase of HFSN
modulation, which is commonly observed before all
strong earthquakes, can be attributed to the fact that
the pre!earthquake accumulation of strong stresses
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which do not change their sign ensures stable (relative
to the observed signal component) position of the
relaxation maximum on the frequency axis. On the
contrary, after the accumulated stresses are released by
the earthquake, the residual background stresses and
strains, although they significantly exceed the tidal
deformations, remain unstable for some time and can
substantially change not only in value but in sign as
well. This should lead to the unstable position of the
relaxation maximum and result in the instability of the
phase of modulation, as explained above. The effect of
antiphase modulation of the attenuation at different
slopes of the relaxation curve is schematically illus!
trated in Fig. 7.

Finally, we note that the pronounced temporal pre!
dominance of the HFSN modulation at the second
harmonic of the tidal impact, which is observed about
the moments of many earthquakes (see the example of
observations in Fig. 2), also agrees with the proposed
dissipative model. Indeed, by changing the relative
positions of the observed HFSN frequency compo!
nent and the relaxation maximum (where the slope of
the tangent line is zero, see Fig. 7) in the vicinity of an
earthquake, one should expect a substantial temporal
decrease in the modulation depth at the fundamental
harmonic and, as a result, an essential predominance
of modulation at the double frequency (as in Fig. 2d).
In order to illustrate this explanation, the normalized
relaxation curve of type (3) or (16) whose position is
sine modulated with a 7% amplitude, and the calcu!
lated amplitudes of the first and the second modula!
tion harmonics as functions of the position of the
HFSN observation frequency on the relaxation curve
are shown in Fig. 8. The variations in the intensity of
the received noise are proportional to the variations in
the effective size of the area from which the noise
comes to the receiver (i.e., to the variations in attenu!
ation, see Eq. (1)). Therefore, in order to calculate the
level of modulation harmonics, it is sufficient to sepa!
rate these harmonics in the variations of attenuation at
the frequency of observations. The latter is convenient
to represent in the normalized form  and to
assume sinusoidal modulation of the position of the
relaxation maximum with the selected swing. It is seen
that for  i.e., in the vicinity of the maximum
of the relaxation curve, there is a local minimum in the
first harmonic and inflection an θ/θmax at 
for which the second harmonic vanishes although the
modulation in the first harmonic remains substantial.
The situations when the amplitude of the second har!
monic has a distinct minimum while the level of the
fundamental harmonic modulation component
remains high are also experimentally observed (e.g.,
the minimum in the second harmonic is seen in
Fig. 2b in the vicinity of the day no. –25, where the
amplitude of the first harmonic in Fig. 2c remains
rather high).

rω ω

1,rω ω =

1.6,rω ω =
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CONCLUSIONS

In summary, we emphasize that the dissipative
model discussed in the present work considers the
combined action of losses (inherently linear in the
physical origin) and increased elastic nonlinearity
both of which are localized on the soft defects of the
rock. This model suggests an explanation for the effect
of tidal modulation of the endogenous seismic noise,
for which there was no generally accepted interpreta!
tion for about 30 years. In the context of the dissipative
mechanism proposed for this effect, we have analyzed
the dissipation mechanisms for two characteristic

cases of dry and fluid!saturated cracks. For the two
discussed cases, the proposed dissipation mechanisms
took into account the same key features of roughness
of crack surfaces typical of real cracks. The analysis
showed that the proposed mechanism of tidal modula!
tion is rather robust to the distribution of crack param!
eters, and a very small (about one per cent and even
less) share of cracks with favorable geometrical fea!
tures is sufficient for its workability. Slow relaxation
processes (related to fluid filtration, gradual break!
ing/rebinding of adhesion bonds, etc.) which know!
ingly take place in the rock do not change the main

Fig. 7. Schematic explanation of the antiphase changes in attenuation on different sides of the maximum of the relaxation curve
during its periodic shift caused by tidal deformations. Due to almost zero derivative in the vicinity of the maximum, the sign of
variations in the attenuation is the same for any direction of its shift; thus, in this region, the second harmonic predominates in
the modulation of absorption.
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±7%. The ratios of the harmonics (panel (b)) agree with the typical observed ratio (see Fig. 2).
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conclusions although they will likely smooth the sharp
phase jumps predicted by the considered model,
which agree with the observations, see, e.g., Fig. 2.

Unfortunately, as of now, there are insufficient
experimental data to verify some implications of the
proposed mechanism. The relevant observations are
very labor!consuming and require long (of the order of
several years) recording to provide a statistically reli!
able interpretation. Primarily, it seems important to
carry out additional multi!frequency measurements
(parallel in time and place) and to verify the model
prediction of probable antiphase modulation of the
sufficiently distant frequency components that fall on
different sides of the relaxation maximum. However,
the proposed mechanism even in its present form is
capable of explaining the observed level of the HFSH
modulation and a variety of its important qualitative
features, such as phase stabilization before strong
earthquakes, phase jumps by  radians often observed
after earthquakes, and variations in the amplitude
ratio of the fundamental to second harmonic in the
vicinity of the time of earthquake. Although there still
remains a hypothetic possibility of direct influence of
tidal deformations on the HFSN emission, the exist!
ing data on the tidal modulation of HFSN well agree
with the predictions of the proposed model. Moreover,
the proposed dissipative mechanism is supported by
independent observations of the phase–amplitude
tidal modulation of the radiation from artificial seis!
moacoustic sources (Glinskii, Kovalevskii, and
Khairetdinov 1999; Bogolyubov et al., 2004), for
which the hypothetic effect of tides on seismoacoustic
emission is definitely not relevant.
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