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a b s t r a c t

Comparison of recent theoretical estimates with experiments has indicated that the ultimate sensitivity
of the conventional modulation technique of crack detection is mainly determined by the background
modulation produced by the quadratic component of the atomic nonlinearity of the matrix material.
Much smaller level of masking nonlinear effects is typical of higher-order interactions due to cubic and
higher-order components in the power-series expansion of the background nonlinearity of the solid. In
contrast, the level of formally higher-order components originated due to nonlinearity of crack-like
defects can be comparable with that of the first-order components. Such strongly increased efficiency of
higher-order interactions is due to the fact that crack-like defects often demonstrate non-analytic (non
power-law) nonlinearity even for moderate acoustic amplitudes. Besides the increased level, the
higher-order components arisen due to non-analytic nonlinearity of cracks can demonstrate
significantly different functional behavior compared to manifestations of the atomic nonlinearity. This
difference can also help to discriminate the contributions of the defects and the background atomic
nonlinearity. Here, we focus on the main differences between the modulation components arisen due to
cubic terms in the power-series expansion of the atomic nonlinearity and similar components
generated by clapping Hertzian nonlinearity of inner contacts in cracks. We also examine experimental
examples of higher-order modulation interactions in damaged samples. These examples clearly indicate
non-analytical character of the defects’ nonlinearity and demonstrate that the use of higher-order
modulation effects can significantly improve the ultimate sensitivity and reliability of the modulation
approach to detection of crack-like defects.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

High interest to the nonlinear-modulation acoustic method of
crack detection is significantly motivated by expectations to
achieve superior detection sensitivity compared to other methods
of nondestructive testing [1–10]. To ensure this goal, the main
attention in the development of the nonlinear-modulation
technique is usually paid to the reduction of various technical
nonlinearities, whereas the masking effect of the atomic non-
linearity of the intact material is neglected. Apparently, this view
is supported by the notion that the dimensionless quadratic
nonlinear parameter b for homogeneous solids is on the order of
100 [11,12]. Therefore, for typical acoustic strains er10!5, the
corresponding nonlinear correction be should have the relative
level about !100 to !80 dB, which is indeed practically
negligible. Furthermore, contributions of terms higher than
quadratic seem to be beyond reasonable measurable values.

It has recently been argued [13] that under resonant condi-
tions, such simplest quasistatic arguments can drastically under-
estimate the modulation level due to the atomic nonlinearity.
More accurate resonant estimates of conventionally measured
modulation components o7O (where o and O are the
frequencies of the interacting weak probe and the intense pump
waves, respectively) indicate that the contribution of technical
nonlinearities of the modern equipment can be equal to or even
less than the contribution of the quadratic atomic nonlinearity.
Therefore, the atomic nonlinearity becomes the main factor,
which limits the ultimate sensitivity of the conventional non-
linear-modulation approach. If the difference between the levels
of theo7O sidelobes for the studied samples is comparable with
the natural variability of the background modulation (typically,
10–15 dB and even more [13]), it can be attributed to many
factors other than the sample damage, which complicates the
early detection of cracks.

As a natural way to improve the sensitivity and reliability of
the nonlinear-modulation approach to crack detection, the
possibility to intentionally use higher-order nonlinear interac-
tions was mentioned in Ref. [13]. Indeed, for higher-order

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ndteint

NDT&E International

0963-8695/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ndteint.2010.09.002

n Corresponding author.
E-mail addresses: vyuzai@hydro.appl.sci-nnov.ru, vyuzai@mail.ru

(V.Yu. Zaitsev).

NDT&E International 44 (2011) 21–31



Author's personal copy

interactions, one can expect a drastic decrease in the masking
signal caused by the atomic nonlinearity for which the power-
series law is typical, such that each additional order in strain
ensures "80–100 dB additional reduction of the masking com-
ponents due to the atomic nonlinearity. In contrast, the
nonlinearity of cracks can significantly differ from the power-
law type even for moderate acoustic amplitudes, so that the level
of higher-order and lower-order modulational components
induced by crack-like defects can be comparable. Therefore, one
may expect that the observation of higher-order modulational
interactions can significantly enhance the contrast between intact
and crack-containing samples.

In what follows, we discuss in more detail this idea and make
comparison with the same series of experiments as discussed in
Refs. [13–15]. We recall that in those measurements (for which
the experimental configuration is schematically shown in Fig. 1),
favorable conditions for multi-wave interactions were ensured by
the impact excitation of a significant number of intense (‘‘pump’’)
low-number resonant eigenmodes of the sample at frequencies
Oi. Initially, those measurements were processed according to the
conventional nonlinear-modulation approach by singling out the
quadratic-type modulational components o7Oi in the vicinity of
the fundamental frequency obOi of a sinusoidal probe ultra-
sound wave. By re-processing the experimental records, we
demonstrate that more complex components of the o7Oi7Oj

type can also be well observed. In what follows, we call them
‘‘cascade components’’ (instead of ‘‘higher-order’’) to avoid the
incorrect impression that their amplitude is of the next order of
smallness in comparison with the conventionally discussed
o7Oi modulation sidelobes. We show that the cascade compo-
nents can ensure noticeably higher contrast between the
reference and crack-containing samples. We also show that the
amplitude dependences for the cascade components o7Oi7Oj

(i.e., formally cubic type) significantly differ from the scaling law
expected for classical cubic nonlinearity, which can be used as an
additional signature of the presence of crack-like defects. We
demonstrate that the actual amplitude behavior of the cascade
components can be fairly well modeled by clapping nonlinearity
of inner Hertzian contacts in cracks.

2. Preliminary note on indications of clapping Hertzian
nonlinearity in acoustically driven crack-like defects

For the further discussion, it is essential to recall that high
softness of crack-like defects results in high increase of the local
strain, which is the physical reason of the strongly increased
nonlinearity of damaged samples. It can readily be shown that in
the expansion of the defect’s equation of state in a power-series in

strain, the nonlinear terms of nth order increase as 1/Bn!1, where
B51 is the small parameter describing the defect softness
compared to the surrounding intact solid [16,17]. Formally this
means that for strains e"B, the higher-order nonlinear terms
should be of the same order as the lower-order terms. Actually,
however, the power-series expansion is no more valid for such
oscillation amplitudes, and the regime of the defect deformation
becomes essentially non-analytical, so that nonlinear components
of formally different orders can have amplitudes of the same
order of smallness. For example, if Hertzian contacts at the crack
interface begin to clap, then their nonlinearity can be approxi-
mated as e3/2H(e) (where strain e is considered positive for
compression and H(e) is a Heaviside function). Consequently,
amplitudes of all higher harmonics produced by such nonlinearity
under sinusoidal excitation e¼A cos(t) exhibit the same func-
tional dependence pA3/2, which is easily seen by taking the
Fourier transform of e3/2H(e).

Due to high softness of crack-like defects, such a non-
analytical clapping regime for inner contacts can occur for fairly
moderate average acoustic strains, e.g., on the order of "10!5 and
even less. Fig. 2 shows experimental examples of amplitude
dependences of the 2nd, 3rd, and 4th harmonics in a sinusoidally
excited resonant sample containing an artificial crack-like defect.
The same power-law behavior with the exponent 3/2 for all
harmonics (see the slopes of the solid lines) corresponds to the
clapping Hertzian nonlinearity. The sample excited near its first
resonance represented a glass rod (1 cm in diameter and about
20 cm in length) with one free and another acoustically rigid (due
to cemented massive backload) boundary. Like in Ref. [18], the
defect was modeled by a transversal diamond-saw-cut (1 mm in
width and 4–5 mm in depth) in which a small metal plate was
inserted. By slightly changing the plate position it was possible to
observe different nonlinear regimes of the defect oscillations,
including the contact-clapping regime, which could be attained at
fairly moderate strains of 10!6–10!5. For the classical power-law
nonlinearity, the higher harmonics should exhibit the quadratic,
cubic, fourth-power, etc. dependences with pronouncedly
different slopes in log–log scale. Certainly, the relative levels of
the harmonics in Fig. 2 are affected by resonant properties of the
sample, so that the resonant odd-type 3rd harmonic is higher
than the non-resonant 2nd and 4th ones. When the inset
was removed (which corresponded to the disappearance of the

Fig. 1. Schematically shown configuration of nonlinear-modulation experiments
[13–15] with sinusoidal probe wave at frequency o tuned in the range 50–70 kHz
and impact-excited intense eigenmodes with frequencies Oi typically ranged from
a few hundreds Hz to a few kHz.
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Fig. 2. Amplitudes of the 2nd (squares), 3rd (circles), and 4th (triangles)
harmonics in a rod-shape resonant sample with an artificial crack-like defect as
functions of the fundamental-harmonic amplitude. The maximal strain of the
harmonic excitation in the defect vicinity was 5$10!6.
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crack-like defect), all harmonics were hardly noticeable against
the measurement noise.

Returning to the discussed nonlinear-modulation experiments
[13–15] with multi-frequency pump componentsOi,Oj, etc., instead
of different higher harmonics we compare the conventional
modulation sidelobes o7Oi,j and cascade components o7Oi7Oj,
which formally correspond to the second- and third-order nonlinear
interactions, respectively. Thus for a power-series law typical of pure
atomic nonlinearity, cubic components o7Oi7Oj should have
practically immeasurable level (80–100 dB lower than the quadratic
o7Oi,j components).

Examples of modulation spectra observed in the experiments
[13–15] for defect-containing and reference samples (a railway-
wheel axle and disk) are shown in Fig. 3, where conventional
o7Oi,j components are plotted in black dashed lines and cascade
components o7Oi7Oj are shown in a lighter color (solid lines).
The expected positions of the sidelobes were calculated using the
experimentally measured frequencies of the impact-excited pump
eigenmodes in the lower-frequency part of the spectrum. The
expected and actual frequencies of the sidelobes were considered
coinciding within the double frequency resolution determined by
the inverse width of the used time window. Typically its value
was 0.2 s, which corresponded to 5 Hz spectral resolution. The
width of the time window was intentionally limited to ensure the
observation of the time dependences of different spectral
components within the characteristic decay time (typically
0.8–1.0 s) of the impact-excited eigenmodes that produced the
modulation of the sinusoidal probe wave. To ensure a stabler form
of the modulation spectrum, the probe-wave frequency was
tuned in the range 50–70 kHz typically in steps of 500 Hz and at
each step identical impacts excited the pump eigenmodes. The
spectra in Fig. 3 are averaged over 10–15 steps and correspond to

the middle of the entire time window of the observation. The
probe-wave component is not explicitly shown: its amplitude is
normalized to zero dB and its position on the frequency axis is
shifted to zero frequency for each measurement step.

For an ideally linear measurement system (assuming that the
background modulation was entirely produced by the atomic
nonlinearity), the cascade components would not be visible at all
in the scale of Fig. 3. The actual noticeable level of cascade
components in the reference samples is evidently explained by
the parasite nonlinearity of the measurement system. Never-
theless, in Fig. 3, the visual contrast between the reference and
damaged samples is significantly higher for the cascade compo-
nents o7Oi7Oj than for the conventional o7Oi,j modulation
sidelobes.

To better quantify the difference between the spectra shown in
Fig. 3 for the reference and damaged samples we use a histogram
representation by analogy with Ref. [19]. Figs. 4 and 5 show the
histograms in which the vertical axis corresponds to the summed
energy for either conventional or cascade sidelobes whose
amplitudes fall into certain amplitude range corresponding to
the width of individual bins on the horizontal axis (in Figs. 4 and 5
the bin width is equal to 4 dB, although the exact value is not
critical). Fig. 4 corresponds to the spectra shown in Fig. 3a and b
obtained for the disks and Fig. 5 is for the spectra Fig. 3a0 and b0

obtained for the axle with an artificial crack-like defect and
without it. The right panels in Fig. 4 demonstrate that the energies
of conventionally consideredo7Oi,j modulation sidelobes for the
reference and defect-containing samples do not change drastically
(since the extent of damage is intentionally chosen not very high).
Their total energies of the o7Oi,j sidelobes summed over all
bins differ by 5 dB only. Therefore, such conventionally used
components do not allow one to make a reliable conclusion
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Fig. 3. Examples of normalized averaged modulation spectra for the samples without defects (panels (a) and (a0)) and with a defect ((b) and (b0)). The upper row is for
railway-wheel disks (the defect-containing disk has naturally developed fatigue damage). The lower row is for a railway-wheel axle (in which an artificial crack-like defect
could be created by inserting a small steel plate in the saw-cut 7 mm in depth). Black dashed lines correspond to conventional modulation componentso7Oi,j, and lighter
solid lines are for the cascade components o7(Oi7Oj).
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whether the defect is present or not. The panels in the left
columns in Fig. 4 correspond to the cascade componentso7Oi7
Oj, whose energy demonstrate significantly higher contrast
between the reference and damaged samples (over 14 dB for the
summed energies).

In Fig. 5 for the axles, the contrast between the cascade
o7Oi7Oj sidelobes is even more impressive (over 30 dB in the
summed energies), although for the conventionally used sidelobes
o7Oi,j, the contrast is also better than in Fig. 4 (22.5 dB in the
summed energies). However, it is evident from both the
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histograms in Fig. 5 and the spectral plot in Fig. 3b0 that this better
contrast is due to the only pair of the most intense o7Oj

sidelobes around 71.9 kHz, for generation of which the position
of the crack happened to be especially favorable. If we exclude
such exceptional sidelobes from the considered o7Oi,j compo-
nents as well as the related o7Oi7Oj cascade sidelobes at the
double frequency 73.8 kHz, then the contrast for summed
energy of the retained o7Oi,j components becomes very weak
(only 2.8 dB), whereas for the retained cascade o7Oi7Oj

components it remains quite high (21.3 dB).
Thus in Figs. 4 and 5, the contrast in the energies for the

cascade o7Oi7Oj components (as well as in their numbers) is
significantly more pronounced. However, one should bear in mind
that for such a comparison, a similar reference sample is
necessary for which the reference spectrum should be obtained
under virtually identical experimental conditions: the same
nonlinearity of the measurement system, similar boundary
conditions, and similar excitation amplitudes, since even under
other identical conditions, the efficiency of nonlinear interactions
significantly depends of the interacting-wave amplitudes. There-
fore, it is very desirable to have more robust (in the ideal case,
independent of wave amplitudes) characteristics of the sample
nonlinearity rather than the straightforward comparison with a
reference sample under as similar experimental configuration as
possible.

3. Normalized cumulative coefficients for the conventional
(quadratic-type) and cascade modulation sidelobes

It was discussed in detail in Ref, [13] that the level of
conventional modulation can noticeably (up to 20–30 dB) vary
due to different interaction conditions for different modes.
Therefore, to obtain stabler results, averaging over a number of
pump- and probe-wave frequencies is required as well as a
normalization procedure to exclude the direct influence of the
pump-wave amplitudes on the modulation level. To quantify the
average level of conventional (i.e., quadratic-type) modulational
components in the case of multiple pump waves, the following
normalized cumulative coefficient was used in Ref. [14]:

K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

V2
þ ðiÞþV2

!ðiÞ
" #r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

V2
pmðiÞ

r
Vp

 !
,

,
ð1Þ

where the summation is performed over the index i of the excited
pump modes. Physically, the structure of this coefficient means
that the energies V2

7 ðiÞ of all left- and right- modulation sidelobes
are summed up. Then the square root of this energy (i.e., the
averaged modulation-sidelobe amplitude) is divided by the
amplitude Vp of the probe wave and by the square root of
energies V2

pmðiÞ of the modulating pump modes. In the case of only
one pump mode with index i, the denominator reduces to the
product Vpm(i)Vp, and in the numerator, only sidelobes V7(i)
produced by the ith pump mode are left. For the discussed
multimode situation, the numerator is dominated by the most
intense modulation sidelobes, whereas the most intense pump
modes dominate the denominator. Since the sidelobe amplitudes
strongly depend on the position of the crack with respect to the
pump-mode structures, the summation over multiple pump
modes diminishes the variance of K2. Besides, this variance can
further be decreased by averaging over the probe-wave frequency
swept in a sufficiently wide range. It is also seen from Eq. (1) that
the value of K2 should depend on the amplification coefficients in
the receiving equipment, which means that only the relative
values of K2 (i.e., comparison between the reference and studied
samples under similar conditions) is physically meaningful. It is

also clear that for a quadratic nonlinearity (for which the sidelobe
amplitudes V7(i)pVpm(i)Vp), the value of coefficient K2 should
remain approximately constant as a function of the pump-wave
amplitude. Indeed, in the experiments discussed in Refs. [13–15],
the amplitudes of impact-excited pump waves decayed (by
10–50 dB for different modes) on the time intervals of the order
of one second, whereas the current value of coefficient K2

remained fairly stable (within several dB). This leads to the
conclusion that the nonlinearity of the studied defects could
reasonably be approximated by a quadratic function.

At first glance it seems that physically it is more reasonable to
use individual normalization ½V2

þ ðiÞþV2
!ðiÞ)

1=2=½VpmðiÞVp) for each
triplet associated with the ith pump mode and then to average
over the probe-wave frequency the individual coefficients.
However, it was found that such individual coefficients are too
unstable in practice. For instance, for some pump modes which
were not longitudinal, the accelerometer aligned with the sample
axis registered apparently very weak amplitudes. Therefore, those
modes gave huge individual nonlinear coefficients, although the
actual level of the resultant sidelobes and the strain in such
modes were comparable with those for other modes. In other
cases, eventual electrically induced signals could also produce
strong fake sidelobes and the respective high individual coeffi-
cients. Therefore, somewhat rude, but much stabler cumulative
coefficient (1) was chosen in Ref. [15].

For the cascade modulation components, in view of the larger
number of interacting and resultant modes, the situation is even
more complex. Under the simplest assumption that the modula-
tion components V ð7 Þ

ij arise due to a cubic nonlinear term (i.e.,
V ð7 Þ
ij pViVjVp), the individual combinations V ð7 Þ

ij = ViVjVp

" #
should

not depend on the pump amplitudes. However, the above
mentioned bad stability of individual coefficients is even worse
for the cascade interactions. Therefore, by analogy with coefficient
(1) for the conventional modulation, the following cumulative
coefficient can be written for cascade components:

K3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i,j
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64
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,
ð2Þ

For this coefficient much like for coefficient (1), not the
absolute, but only the relative values for reference and studied
samples have physical meaning.

By analogy with the quadratic character of coefficient (1), a
fairly constant value of K3 under varying amplitudes of interacting
waves should be observed for a cubic nonlinearity. In this context,
a ‘‘non-cubic’’ behavior of K3 (e.g., its pronounced dependence on
time in the case of gradually decaying impact-excited pump
modes) can serve as a signature of a non-analytical character of
the sample nonlinearity. This in turn indicates a high probability
of the presence of soft structural defects (first of all, cracks or
delaminations with clapping contacts).

Some examples of temporal dependences for the coefficients K2
defined by Eq. (1) are shown in Fig. 6 together with the cascade
coefficient K3. Coefficients K2 are truly cumulative over all o7Oi

sidelobes that well exceed the noise. However, for clarity, coefficients
K3 in Fig. 6, actually are individual coefficients found for several most
intense cascade modulation components and the corresponding
generating pump modes. The samples are an axle with a natural
transversal crack, a naturally-damaged disk, and another axle with an
artificial crack-like defect (the two latter samples are the same as for
Fig. 3). In view of exponential character of the pump-field decay, the
time axis in Fig. 6 roughly corresponds to the logarithm of the pump-
action amplitude (the exact proportionality could be if the decay
times were equal for all pump modes).
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Fig. 6 shows that coefficient K3 is pronouncedly non-constant
unlike fairly stable conventional-modulation coefficient K2. This
fact indicates that the cascade components were predominantly
produced by a non-cubic nonlinearity. The inset in the plot c in
Fig. 6 (corresponding to the axle with the artificial crack in the
form of a saw-cut with an inserted steel plate) shows for
comparison the coefficient K3 in the absence of the defect (the
plate removed from the saw-cut). It is seen that in such a defect-
free case the coefficient K3 remains fairly stable as expected for a
classical cubic nonlinearity. In contrast, for the samples with
crack-like defects, the pronounced increase in K3 with increasing
time (i.e., decreasing pump amplitude) indicates that the cascade
sidelobes exhibit a clear trend to saturation at higher pump
amplitudes. This observation well agrees with the expectation
that the pump modes can be sufficiently intense to cause clapping
of inner contacts in the cracks and thus ensure a non-analytical
nonlinearity of the crack-like defects.

The latter conclusion, however, apparently contradicts with
quite stable values of the above introduced coefficient K2 for the
classical (quadratic) modulation componentso7Oi in exactly the
same experimental runs. Fairly stable K2 apparently leads to the
conclusion that even for the samples with cracks, the nonlinearity
can be approximated by a power-series with the leading
quadratic term. To resolve this paradox, in the next section we
consider in more detail the expected amplitude behavior of
conventional and cascade modulational sidelobes using a simple
model of the defect.

4. Simulations of modulation-sidelobe behavior in the case of
multi-frequency pump excitation

For the purpose of the present consideration, it is sufficient to
consider functional dependences and relative variations of the
sidelobes rather than their absolute estimates. Thus we will not
take into account resonant properties of the sample (unlike
study [13]), but simply consider the nonlinear source of the
corresponding modulational components. Recalling Fig. 2, which
demonstrates that the nonlinearity of crack-like defects can be
strongly dominated by the Hertz-contact contribution, we will
model the nonlinear source by a weakly pre-compressed Hertzian
contact that can be transferred into clapping regime by suffi-
ciently intense acoustic excitation. A similar model was used in
Ref. [14] in the discussion of cross-modulation phenomena
(i.e., the transfer of amplitude modulation from one carrier wave
to another one). The weak background nonlinearity of the
matrix material in this approach can be modeled by a term

corresponding to a much stronger prestrained contact, which
cannot be transferred into clapping regime even at maximal
pump amplitudes. Actually this second term can always be
expanded into power series in strain amplitudes. Thus we
consider the following nonlinear function:

s0þ ~s ¼ Aðe0þ ~eÞ3=2Hðe0þ ~eÞþBðme0þ ~eÞ3=2Hðme0þ ~eÞ: ð3Þ

Here, like in Ref. [14], H(y) is a Heaviside function indicating
that the contacts do not bear a tensile stress; s0 and e0 are the
static stress and the corresponding static strain in the sample,
which is needed in the model to adjust the level of the
background (i.e., without the defect) nonlinearity; perturbations
~eooe0 and ~soos0 are the acoustic strain and stress. Small
parameter m51 in the second term describes the pre-strain of the
weak contact (i.e., the defect). Parameters A and B in Eq. (3) allow
one to adjust the relative strength of nonlinearity of the defect
and the matrix material by varying the ratio B/A.

In view of the condition ~eooe0, the Heaviside function can be
omitted in the first (‘‘matrix’’) term of the right-hand side of
Eq. (3). In contrast, in the second term describing the defect, the
weak pre-strain me0 can be comparable with the acoustic strain ~e,
such that the contact can be transferred into clapping regime for
9~e949me09 (note that parameter m in the general case can also be
negative, which corresponds to an initially weakly open contact).
For sufficiently small 9~e9o9me09, the second term can be
expanded into a power series like the first non-clapping term,
such that the dimensionless quadratic nonlinear parameter
b in the resultant expansion of the acoustic perturbations
~sð~eÞp~eþb~e2þ ::: can be represented as b* ð1=2Þe!1

0 ½1þðB=AÞ
m!1=2).

Typical values on the nonlinear parameter in homogeneous
solids can readily be modeled by choosing the corresponding pre-
strain e0. For example, e0¼10!1 corresponds to the nonlinear
quadratic coefficient b* e!1

0 =2¼ 5 related to the first (‘‘matrix’’)
term in the right-hand side of Eq. (3), which is typical for
homogeneous metals [11,12]. Then choosing m¼5 +10!5 we
ensure that the threshold acoustic amplitude ~e ¼ me0 ¼ 5$ 10!6

transfers the weak contact into clapping regime. Further, choosing
the ratio ðB=AÞ ¼ 2m1=2 * 1:41$ 10!2 we see that the second term
in the right-hand side of Eq. (3) results in the increase of the total
value of quadratic nonlinear parameter b by a factor of three (i.e.,
by about 10 dB) compared with the background initial value
b* e!1

0 =2. For conventional o7O modulation sidelobes, this
increase in b should result in a similar 10 dB increase, which is
still comparable with the natural variability of the conventional-
modulation level for different samples (as discussed in detail in
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Ref. [13]). Therefore such a moderate 10 dB contrast in the level of
the conventional-modulation is not yet sufficient for making
unambiguous conclusions on the presence or absence of the
defect (see the corresponding real examples in Fig. 2).

The next step is to compare the contrast in the level of the
next-order (cascade) sidelobes o7(Oi7Oj) arising due to the
interaction of a probe wave at frequency op with two pump
waves at frequencies Oi,j. Especially interesting is to consider the
transition of the contact to clapping regime. Unlike the simple
generation of higher-order harmonics for which identical power
law with the 3/2 exponent is expected in the clapping regime (as
demonstrated in Fig. 2), the amplitude behavior of the cascade
sidelobes can hardly be studied analytically, but can easily be
simulated using Eq. (3) and a multi-frequency spectrum of ~e. The
performed numerical simulations indicate that in this case, not
only the ratio of individual wave amplitudes to the clapping
threshold strain me0 is important, but also the ratio between the
amplitudes of the interacting waves themselves. Here we consider
a probe excitation Sp and two different pump waves with strain
amplitudes S1 and S2, which is sufficient to demonstrate the main
features of cascade modulation components M1+2 around the
probe wave at frequencies op7O17O2. For comparison we also
consider the conventional modulation sidelobes M1 and M2 (at
frequencies op7O1 and op7O2). In the simulation, the probe-
wave amplitude is assumed constant (Sp¼me0/10), i.e., signifi-
cantly smaller than the clapping threshold me0 to which we assign
zero-dB value. To represent the results in a simpler under-
standable 2D-plot, we ensure that one pump-wave amplitude S1
is kept constant and the second pump-wave amplitude S2 varies
from sub-threshold to significantly super-threshold amplitudes:
me0/30oS2o30me0.

Fig. 7 shows examples of the amplitude dependences for M2

(the conventional modulation sidelobe induced by the pump-
wave S2 with varying amplitude) and the cascade component
M1+2 (of the op7O17O2 type) in the presence and absence of
the weak contact. Its absence corresponds to B¼0 in Eq. (3). The
choice of particular wave frequencies is not very important (they
only must be different, better incommensurable to avoid
degenerate cases). The plots in Fig. 4a and b correspond to two
significantly different interaction regimes.

First, consider the case of small S1¼me0/5ome0, for which the
initial part of the curves in Fig. 7a (where S2ome0) corresponds to
the non-clapping regime of the weak contact, whose nonlinearity
can be expanded in a series in powers of strain similar to the
classical atomic nonlinearity. Thus for S2ome0, the sidelobe M2 is
produced by the quadratic term and is proportional to S2 both in

the presence and absence of the contact as is seen in Fig. 7a
(curves marked by squares). For larger S24me0 corresponding to
the contact clapping, Fig. 7a demonstrates that M2 increases
somewhat slower than for the pure quadratic regime, but remains
monotonic.

Much stronger is the difference between the before-clapping
and clapping regimes for the cascade component M1+2. Its
behavior in the before-clapping regime is dominated by the cubic
term in the nonlinear-function expansion. Therefore, M1+2 is
proportional to S1S2Sp and increases as a linear function of S2 as is
seen in Fig. 7a in the region S2ome0. However, for S24me0, unlike
the conventional modulation sidelobe M2, the behavior of M1+2

becomes non-monotonic. Near S2Eme0 its amplitude rapidly
decreases and passes through zero (which looks like a sharp
minimum in the log–log plot in Fig. 7a), then M1+2 reaches a
smooth maximum and slowly decreases again. The reason of
passing through zero is that near S2Eme0, the phase of the
cascade component switches to the opposite (causing the side-
lobe-amplitude compensation). Similar non-monotonic behavior
due to clapping Hertzian nonlinearity is known for the third
harmonic of initially sinusoidal excitation [20]. In the context of
NDT applications, comparing the cases of the presence (filled
symbols) and the absence (empty symbols) of the soft contact,
one can see the remarkable difference in the contrast of the
conventional (squares) and cascade components (triangles; about
10 dB and 60–40 dB, respectively).

In the second example shown in Fig. 7b, the amplitude of the
invariable first pump wave significantly exceeds the clapping
threshold, S1¼3me0, whereas the second pump wave S2 varies in
exactly the same range as in Fig. 7a. It is clearly seen in Fig. 7b that
despite the essentially clapping nonlinearity of the weak contact,
the amplitude M2 remains linearly proportional to S2 like for the
classical quadratic nonlinearity. More precisely, the simulation
shows that the value of M2 produced by the pump wave S2 also
depends on S1 for S1bme0, albeit fairly slowly (" S!1=2

1 ).
What for the cascade component M1+2 (marked by filled

triangles in the presence of the clapping weak contact), its behavior
changes much stronger compared with Fig. 7a. Namely, the peculiar
minimum near S2"me0 disappears and the cascade-component
amplitudeM1+2 remains linearly proportional to amplitude S2 while
S2oS1. Then for S24S1, the M1+2 component exhibits saturation
and even slightly decreases at S2bS1. In the NDT context, it is
important to emphasize that the presence of the clapping weak
contact again results in a strong (about 50 dB) increase in the level of
the cascade sidelobe M1+2. compared with only "10 dB increase in
the level of the classical sidelobe M2 as is seen in Fig. 7b.

-140
-120
-100
-80
-60
-40
-20

0

Am
pl

itu
de

s 
M

2 a
nd

 M
1+

2, 
dB

-30 -30
-120

-100

-80

-60

-40

-20

0

Am
pl

itu
de

s 
M

2 a
nd

 M
1+

2, 
dB

S2, dB S2, dB
-20 -10 0 10 20 30 -20 -10 0 10 20 30

Fig. 7. Simulated amplitude dependences of conventional sidelobes M2 (squares) and cascade components M1+2 (triangles). Filled symbols correspond to the presence and
empty symbols, to the absence of the defect. Plot (a) is for the small amplitude of the first pump wave S1¼const.¼me0/5, and (b) is for the intense pump wave with
amplitude exceeding the clapping threshold, S1¼const.¼3me0. For both plots, the probe-wave amplitude is Sp¼me0/10 and the second pump-wave amplitude varies in the
range me0/30oS2o30me0.

V.Yu. Zaitsev et al. / NDT&E International 44 (2011) 21–31 27



Author's personal copy

Calculations similar to those illustrated in Figs. 7a and b were
performed for various amplitudes of interacting waves and for
different exponents (not necessarily Hertzian 3/2) of the clapping
nonlinearity. Table 1 shows the results for the so-found scaling
laws for conventional sidelobes M1 and M2 and cascade M1+2,
including the case of the presence of an additional strong
excitation S04S1, S2, Sp and S04me0. The table shows, that if
among several interacting waves one wave is the most intense
and significantly exceeds the clapping threshold, then for all other
weaker waves, the clapping nonlinearity is effectively smoothed.
Consequently, interactions of the weaker waves exhibit the
scaling laws rather typical of classical power-law (quadratic or
cubic) nonlinearities, although the values of the effective quad-
ratic and cubic nonlinear parameters are controlled by the
strongest wave. For the right column in the table, this strongest
excitation is S0, and for the middle column, this is S1. Table 1 also
shows that the dependence of the effective cubic nonlinear
parameter on the strongest-wave amplitude is more pronounced
than for the quadratic one.

In particular, for the Hertzian nonlinearity with n¼3/2, if
either pump component S1 or S0 is the strongest and exceeds the
clapping threshold (i.e., S1bme0 or S0bme0), then the cascade
sidelobe scales as M1þ2pðS1S2SpÞS

!3=2
1,0 rather than M1+2pS1S2Sp

expected for the classical cubic nonlinearity. Therefore, for the
classical cubic nonlinearity, the ratio M1+2/(S1S2Sp) should be
constant, whereas for multi-wave interactions due to the clapping
Hertzian contacts, the combinations M1þ2=½ðS1S2SpÞS

!3=2
1,0 ) should

remain constant. We also emphasize that for the conventionally
observed sidelobesM1,2, the influence of the strongest wave in the
clapping regime is much weaker than for the cascade sidelobes.
Table 1 indicates that instead of classical quadratic scaling laws
M1pS1Sp and M2pS2Sp, the clapping nonlinearity in the presence
of the most intense wave S1bme0 or S0bme0 results in the
modified scaling laws M1pðS1SpÞS

!1=2
1,0 and M2pðS2SpÞS

!1=2
1,0 . In

other words, for the conventional sidelobes M1 and M2, the
‘‘clapping’’ scaling law is modified by the most intense wave
significantly weaker, by the factor S!1=2

1,0 instead of factor S!3=2
1,0 for

the cascade sidelobes. It is interesting that in the presence of the
most intense ‘‘smoothing’’ wave S1,04S2, Sp, the proportionality
M2pS2Sp can persist even if all amplitudes belong to the clapping
region, S2bme0 and Spbme0.

Now we may return to the above formulated paradox that in
the same measurements, the conventional modulational sidelobes
M1,2 can behave almost like in the classical quadratic case,
whereas the cascade components M1+2 indicate a quite pro-
nounced non-classical regime of clapping nonlinearity. We recall
that normally the strongest impact-excited mode is one of the
lowest eigenmodes for which the decay rate is much smaller than
for others, so that during the decay time of the higher-order
modes, such an intense mode (S0 or S1 in Table 1) can decay
relatively insignificantly. Therefore, for conventional sidelobes
induced by almost all other pump modes, one can expect fairly
insignificant difference between the ‘‘clapping’’ scaling and
classical quadratic scaling (e.g., M2pðSpS2ÞS

!1=2
0,1 and M2pSpS2,

respectively). In addition, the atomic nonlinearity can also give a
non-negligible contribution to the conventional sidelobes, such
that their resultant behavior can demonstrate even weaker

dependence on the strongest-wave amplitude than scaling S!1=2
0,1

expected for the pure clapping.
In contrast, for the cascade component M1+2, the background

contribution of the atomic nonlinearity is orders of magnitude
smaller, whereas the clapping nonlinearity results in a signifi-
cantly steeper S!3=2

0,1 dependence on the amplitude of the strongest
wave. These conclusions explain the apparent contradiction
between the simultaneously observed almost quadratic classical
scaling law for conventional sidelobes o7Oi and pronounced
deviation from classical cubic scaling for cascade sidelobes
o7Oi7Oj. In the NDT context, this pronounced functional
difference of the cascade-sidelobes scaling from the classical
cubic law can be used as an additional signature of the presence of
crack-like defects in the sample.

5. Comparison of experimental data with the simulated
scaling laws for clapping contacts

We have already seen from Fig. 6 that in the discussed
experiments with impact-excited multiple pump modes, the
cascade components demonstrate significant deviation from the
classical cubic scaling, since the ratioM1+2/S1S2Sp does not remain
constant as a function of time. This fact indicates a non-analytical
regime of the defect’s nonlinearity. According to the performed
simulation, this can be ensured if at least one of the pump modes
(which we denote S0) has amplitude S0bme0.

Let us discuss in more detail the sample (railway axle) with a
natural transversal crack, the same as for Fig. 6a. The examination
of the spectrum of impact-excited modes confirmed the expecta-
tion that the lowest most intense modes had minimal decay rates.
One of those modes (903 Hz) was identified as the lowest
longitudinal mode. The accelerometer aligned with the axle axis
indicated that the initial strain amplitude for this mode exceeded
10!5. Further examination showed that there was another,
obviously non-longitudinal and fairly intense mode at 190 Hz.
The vibrations for this mode should be orthogonal to the axis and
thus could be registered only due to parasite transversal
sensitivity of the accelerometer. Thus the actual stain amplitude
for this mode could strongly exceed the apparent value. It was
naturally to assume that this intense and slowly decaying mode at
190 Hz could ensure the clapping regime of the defect (i.e., it
could play the role of modes S1 or S0 in Table 1). It is essential that
for the discussion of the functional behavior of the sidelobes we
do not need to know the exact amplitude of this most intense
mode.

According to the previous section one may expect that, for the
conventional modulation, the own sidelobe of the strongest mode
S0 could demonstrate the most clear scaling of the type pSpS

1=2
0 ,

whereas for other modes, the classical quadratic scaling MjpSpSj
could be corrected by the strongest mode resulting in the
‘‘clapping’’ scaling law MjpðSpSjÞS

!1=2
0 . Fig. 8 shows the corre-

sponding examples for several conventional sidelobes, which well
agree with such expectations. The sample is the railway axle with
a natural crack (the same as for Fig. 6a).

Since the modes decay nearly exponentially, in the logarithmic
scale, the horizontal time axis in Fig. 8 is proportional to the

Table 1
Scaling laws for the modulational sidelobes in clapping and non-clapping regimes.

S1+S2+Spome0 S1bme0 and S14Sp, S2 S0bme0 and S04Sp, S1, S2

M1 SpS1 (and does not depend on S2) SpSn!1
1 ¼ ðSpS1ÞSn!2

1 ðSpS1ÞSn!2
0

M2 SpS2 (and does not depend on S1) ðSpS2ÞSn!2
1 ðSpS2ÞSn!2

0

M1+2 SpS1S2 SpS2Sn!2
1 , ðSpS2S1ÞSn!3

1 ðSpS2S1ÞSn!3
0
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amplitude of the respective wave. Thus for classical quadratic-
type scalingMipSiSp, the time dependences of the pump-modes Si
and their modulational sidelobes Mi should look as parallel lines.
However, Fig. 8 demonstrates that the sidelobes actually decay
slower. The averaged slopes for the pump modes and the
respective sidelobes indicate that, for the pump mode at 190 Hz,
the sidelobe scales closely to pS1=20 , whereas for the other modes
at 1338 and 2916 Hz, the ratios of the slopes are close to pS0:750 ,
which also fairly well agree with the above discussed scaling laws
for clapping contacts. The insets in Fig. 8 additionally show the
ratios Mi/Si, which are clearly decreasing in contrast to values
MiS

1=2
0 =Si, which are fairly stable as expected for the contact-

clapping regime (see Table 1).

Let us now discuss the scaling behavior of cascade sidelobes
for the same sample. First, we consider the coefficient of the cubic
type

Kcub
3 ¼

M1þ2

SpS1S2
, ð4Þ

which should remain constant if the cascade components M1+2

were produced by the pump modes S1 and S2 that interact with
the probe wave Sp due to cubic classical nonlinearity. The
modified coefficient of the form

Kclap
3 ðS04S1Þ ¼

M1þ2

SpS1S2
S3=20 , ð5Þ

0.2
-50

-45

-40

-35

2

1

S 1
 a

nd
 M

1,
 d

B

Time, s

190 Hz

0.2
2
3
4
5
6
7
8

4

Am
pl

itu
de

, d
B

Time, s

3

0.0
-45

-40

-35

-30

-25

1338 Hz

2

1

S 1
 a

nd
 M

1,
 d

B
Time, s

0.0
11
12
13
14
15
16
17

Am
pl

itu
de

, d
B

Time, s

3

4

0.2
-35

-30

-25

-20

-15

-10

-5

2916 Hz

2

1

S 1
 a

nd
 M

1,
 d

B

Time, s

0.2
10
11
12
13
14
15

Am
pl

itu
de

, d
B

Time, s

3

4

0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

0.4 0.6 0.8
0.1 0.2 0.3 0.4 0.5 0.6

0.4 0.6 0.8

Fig. 8. Examples of time dependences for intense pump modes S1 (lines marked 1) and the corresponding conventional modulation sidelobes M1 (lines marked 2) in the
railway axle with a natural transversal crack. Dashed lines show the averaged slopes. The insets show clearly decreasing ratios S1/M1 (lines marked 3) and fairly stable
smoothed clapping-type scaling coefficientsM1S

1=2
0 =S1 (lines marked 4). For all panels, the most intense pump wave S0 corresponds to the 190 Hz mode, such that S1¼S0 for

panel (a).

0.2
10

15

20

25

2

1

 M
od

ul
at

io
n 

co
ef

fic
ie

nt
, d

B

Time, s
0.2

-40

-30

-20

-10

2

1

 M
od

ul
at

io
n 

co
ef

fic
ie

nt
, d

B

Time, s

-10

-5

0

5

2

1

 M
od

ul
at

io
n 

co
ef

fic
ie

nt
, d

B

-30

-25

-20

-15

-10

-5

0

2

1

 M
od

ul
at

io
n 

co
ef

fic
ie

nt
, d

B

0.4 0.6 0.8

0.2
Time, s

0.4 0.6 0.8 0.2
Time, s

0.4 0.6 0.8

0.4 0.6 0.8

Fig. 9. Examples of pronouncedly growing with time cubic-type cascade coefficient (4) (curves marked 1) and clapping-type cascade coefficient (5) exhibiting much stabler
values (curves marked 2). Panel (a) and (b) are for degenerate modulational sidelobes separated from the probe-wave frequency by the double pump-wave frequency
190 Hz+190 Hz and 2916 Hz+2916 Hz, respectively. Panels (c) and (d) are for non-degenerate sidelobes corresponding to the interaction of different pump modes
(903 Hz+1338 Hz and 903 Hz+2916 Hz, respectively).

V.Yu. Zaitsev et al. / NDT&E International 44 (2011) 21–31 29



Author's personal copy

should remain constant if the interaction is due to the clapping
Hertzian nonlinearity and the strongest wave S0 does not directly
participate in the generation of the sidelobe M1+2 (see the right
column in Table 1 for n¼3/2). If the strongest mode directly
participates in the interaction (which corresponds to the case
S1¼S0), the ‘‘clapping’’ coefficient takes the form

Kclap
3 ðS0 ¼ S1Þ ¼

M0þ2

SpS2
S1=20 ð5uÞ

Examples of time dependences for coefficients (4), (5) and (50)
are shown in Fig. 9. Panels (a) and (b) in Fig. 9 are for the
degenerated cascade components corresponding to the double
frequency of the pump modes at 190 and 2916 Hz, respectively.
Panels (c) and (d) are for the non-degenerated cascade sidelobes
produced by combined action of the pump modes (903 Hz+1338
Hz) and (903 Hz+2916 Hz), respectively. In the calculation of the
modified coefficient Kclap

3 , in all cases the 190 Hz mode is
considered the strongest. All examples show that coefficient
Kcub
3 corresponding to the cubic scaling defined by Eq. (4) is non-

constant (pronouncedly growing with the time), whereas the
modified clapping-type coefficients Kclap

3 defined by Eqs. (5) and
(50) remain fairly stable. Therefore, the scaling expected for the
clapping nonlinearity much better describes the actual behavior
of the cascade sidelobes and confirms the expectation that the
change in the scaling law due to clapping is much more
pronounced for cascade sidelobes than for the conventionally
observed lower-order sidelobes.

In conclusion, Fig. 10 shows the same experimental data as for
Fig. 9d (but in a wider time range) together with the simulated
values of the cascade coefficients. The simulation was made using
Eq. (3) in which we substituted the amplitudes S0, S1, and S2
corresponding to the experimentally observed time dependences
for the most intense mode S0 at 190 Hz and the two other
interacting longitudinal modes S1,2 at 903 and 2916 Hz. The cubic-
type cascade coefficient (4) was used to calculate curve 10 in
Fig. 10, whereas curve 20 is for the clapping-type coefficient (5). In
the modeling, conditions S0bme0 and S04S1,2, Sp were the key

assumptions, which ensured fairly good agreement with the
observed behavior of the cascade coefficients. That is, it was not
necessary to know exact amplitudes of the weaker waves S1,2 and
Sp since the scaling laws were controlled by the most intense
mode that produced the clapping (see Table 1). Since only the
functional behavior of the discussed coefficients has physical
sense, the calculated curves can be arbitrarily shifted vertically.
The superposed simulated and experimental dependences in
Fig. 10 demonstrate fairly good agreement. Overall, the scaling
laws for the examined modulation sidelobes consistently indicate
that the most intense pump wave ensured the clapping regime of
the nonlinearity of the crack.

Although the pump-mode amplitudes could be estimated only
approximately, the pump-strain amplitudes could hardly exceed
10!6–10!5 during most part of the analyzed time window
(typically 0.1–1.0 s after the impact). It does not look probable
that such moderate strains could close and open the entire crack,
because it is known that the strain required to completely close a
crack is approximately equal to the ratio of the crack opening to
its diameter (crack’s aspect ratio). The aspect ratios of about 10!6

and less indeed look unrealistically small for cracks. However, it
should be taken into account that real cracks’ interfaces typically
have wavy asperities, which create (or maybe nearly create) inner
wavy-shape contacts. At such contacts, locally the separation of
the crack surfaces is much smaller (down to nanometer scale)
than the average crack opening. Such contacts can already exhibit
clapping-type behavior under the influence of strains that are 2–3
orders of magnitude smaller than the strain required to cause
clapping of the entire crack. This conclusion is also supported by
other experimental data [21,22], so that it is not surprising that
strains on the order of 10!6 in the discussed experiment could
cause clapping of inner crack contacts. We can recall Fig. 2 in
which the parallel dependences for different-order higher har-
monics clearly indicated clapping regime of Hertzian contacts in
the artificial crack-like defect for strains "10!6

From the viewpoint of diagnostic applications, it is important
to emphasize that the expected contrast in the level of cascade
components between damaged and reference samples can be
much higher than for the conventional modulation sidelobes
normally used in the nonlinear-modulation approach to crack
detection (compare the contrasts of 40–60 dB for the cascade
components against 5–10 dB for the conventional ones as shown
in Fig. 7). On the other hand it should be clearly understood that
such a high expected sensitivity of the cascade components is
much more demanding to the linearity of the entire measurement
system. Unlike the conventional modulation for the cascade
sidelobes, the main masking factors are additive noises, technical
nonlinearities in the measurement equipment and, especially, the
nonlinearity of the supporting system rather than the background
atomic nonlinearity.

The experimental spectra (a) and (a0) in Fig. 3 demonstrate
that the parasite nonlinearity of the measurement system
produces quite a noticeable level of cascade component even for
reference defect-free samples. This did not allow us to attain the
40–60 dB contrast expected if the cascade sidelobes were
produced by the atomic nonlinearity. Nevertheless, even in real
experiments the contrast in the cascade modulation between
the reference and damaged samples is much better than for
conventional modulation.

6. Conclusion

To conclude we emphasize the main points discussed in this
article.
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coefficients for the cascade modulation sidelobe generated by the pump modes at
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- The performed study was motivated by the earlier obtained
conclusion [13] that for the presently achieved quality of
measurements, it is the atomic nonlinearity which limits the
ultimate sensitivity of the conventional nonlinear-modulation
method of crack detection based on the use of quadratic-type
nonlinear interactions.

- A natural way to further improve the sensitivity of the nonlinear-
modulation approach can be the use of more complex (higher-
order) modulational interactions, for which the background
contribution of the atomic nonlinearity should be drastically
reduced. In the present study, we focused on the modulational
components of the o7Oi7Oj type, which naturally appear in
schemes with impact-excited multi-frequency pump excitation
like in Ref. [13–15]. For such cascade components, the back-
ground atomic nonlinearity should contribute via cubic
terms, whose intensity is negligibly small. It is experimentally
shown that reliable observation of crack-produced cascade
modulation is possible despite the parasite nonlinearities
of the measurement system, whose masking influence becomes
the main limiting factor. It is demonstrated that the energy
of the higher-order modulation sidelobes o7Oi7Oj can
ensure significantly higher contrast between reference
and damaged samples compared with the energy of the
conventionally observed sidelobes o7Oi (see the examples in
Figs. 3–5).

- The performed simulations and comparison with experiments
have lead to the conclusion that the cascade modulational
components in samples with crack-like defects can be well
described by the clapping Hertzian nonlinearity. The modeling
explained why even for clapping Hertzian nonlinearity of inner
contacts in cracks, the behavior of conventional modulational
components of the o7O type can be reasonably well
approximated assuming the simplest classical quadratic non-
linearity of the contacts. This effect of ‘‘smoothed’’ clapping
nonlinearity can be compared with the well-known ‘‘smooth-
ing’’ of the dry friction by an intense high-frequency wave,
which produces effective viscous-like damping (the dithering
effect).

- For the cascade components o7Oi7Oj, the clapping char-
acter of the nonlinearity is more important and results in
pronouncedly non-cubic-type scaling laws. In the NDT context,
this functional difference between the modulational sidelobes
generated due to classical power-law and clapping nonlinea-
rities can also be used to detect the presence of nearly closed
cracks, as well as such defects as delaminations or damaged
adhesive connections, for which similar contact-type non-
linearities are also typical [23,24].

Overall, it can be concluded that cascade-modulation effects
can be of practical interest to improve the sensitivity of the
nonlinear-modulation approach to crack detection, although this
approach is much more demanding to the linearity of the entire
measurement system.
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