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Mechanisms of acoustic energy dissipation in heterogeneous solids attract much attention in view

of their importance for material characterization, nondestructive testing, and geophysics. Due to the

progress in measurement techniques in recent years, it has been revealed that rocks can demonstrate

extremely high strain sensitivity of seismoacoustic loss. In particular, it has been found that strains

of order 10�8 produced by lunar and solar tides are capable of causing variations in the seismoa-

coustic decrement on the order of several percent. Some laboratory data (although obtained for

higher frequencies) also indicate the presence of very high dissipative nonlinearity. Conventionally

discussed dissipation mechanisms (thermoelastic loss in dry solids, Biot and squirt-type loss in

fluid-saturated ones) do not suffice to interpret such data. Here the dissipation at individual cracks

is revised taking into account the influence of wavy asperities of their surfaces quite typical of real

cracks, which can drastically change the values of the relaxation frequencies and can result in giant

strain sensitivity of the dissipation without the necessity of assuming the presence of unrealistically

thin (and, therefore, unrealistically soft) cracks. In particular, these mechanisms suggest interpreta-

tion for observations of pronounced amplitude modulation of seismo-acoustic waves by tidal

strains. VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3664079]

PACS number(s): 43.25.Ba, 43.25.Dc, 43.25.Ed [OAS] Pages: 1–12

I. INTRODUCTION

In recent years, much attention has been paid to the so-

called mesoscopic nonlinear elasticity1 of solids containing

such structural features as cracks, contacts, intergrain

aggregates of dislocations, etc. that are small in the scale of

the elastic wave length. Quite often the quadratic

nonlinear-elastic parameter b for such materials can be

103 � 104 in contrast to b � 100 typical of ideal crystals of

homogeneous amorphous solids. The common feature of

the above-mentioned structural features defects is their

very high relative softness compared with that of the sur-

rounding homogeneous material. Thus the local strains at

the defects are strongly (often by several orders of magni-

tude) enhanced, which results in strongly increased macro-

scopic elastic nonlinearity. This mechanism of strongly

increased structurally induced nonlinear elasticity can be

instructively elucidated using distributed rheological-level

models.2,3

In many cases, adhesion or frictional effects are also

localized at those soft defects; this makes the resultant nonli-

nearity hysteretic.1 In recent years, increasing attention has

also been paid to nonlinear-dissipative properties of meso-

scopic solids, which manifest themselves in rather pro-

nounced variations in the dissipation of one elastic wave in

the presence of another wave4,5 or an applied (quasi)static

stress (although the very fact of pressure dependence of dis-

sipation or its dependence on the acoustic wave amplitude in

rocks has been known for years6,7). The most striking feature

is that quite moderate strains e � 10�6 � 10�5 are able to

cause variations in the decrement up to tens of percentages

or even several times,5,8–10 whereas the accompanying varia-

tions in the elastic moduli are on the order be and do not

exceed 10�2 � 10�3.

In addition to laboratory measurements, even more giant

strain sensitivity of the dissipation is indicated by some field

data. For example, in experiments11 on long-range (357 and

430 km) propagation of monochromatic elastic wave produced

by high-stability vibration sources operating at frequencies of

5� 7 Hz, the accuracy of the measurements was sufficient to

single out periodic variations in the received-signal parame-

ters that were well-correlated with the periodicity of the

lunar-solar tides. For tidal strains in the Earth crust, the char-

acteristic amplitude12 is � 10�8, whereas in observations in

Ref. 11, the variations of the received-signal amplitude

amounted to 2� 4 percent and 1� 2� for the signal phase.

These values correspond to the path-averaged relative varia-

tions in the elastic modulus DE=E � 10�5 and absolute varia-

tions in the decrement Dh � 3 � 10�5, which are of the same

order of magnitude. Assuming a reasonable6,7 for moderately

cracked rocks decrement h � ð0:3� 1Þ � 10�2 (i.e., the qual-

ity factor Q ¼ p=h � 100� 300), we estimate that the rela-
tive variation in the decrement is Dh=h � 0:3 � 10�2 and is

over two orders of magnitude greater than DE=E � 10�5.

Taking into account that the tidal strain e0 � 10�8, we

obtain the path-averaged estimate for the quadratic nonlinear

parameter b ¼ ðDE=EÞ=e0 � 500� 700, which is not so

high as b � 105 reported, for example, in the pioneering

observations13,14 of the tidal variations in the elastic-wave

velocities. The above-estimated smaller value of b is not sur-

prising because in the long-range experiments,11 the wave
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path reached depths of several tens of kilometers where the

high pressure of the overburden rock layers closed soft cracks

and significantly reduced the path-averaged nonlinearity of

the rocks.

Much higher (comparable with the data in Refs. 13 and

14) values of b were observed in cross-well experiments15

with a high-stability downhole seismo-acoustic source operat-

ing at a frequency of 167 Hz, the propagation distance 360 m

with the estimated wave velocity along the path about

3000 m/s. In other work,15 the tide-induced variations for the

wave phase were about 0:05 rad, and elastic-modulus varia-

tions DE=E � 10�3, which indicated the nonlinearity parame-

ter b ¼ ðDE=EÞ=e0 � ð1� 2Þ � 105 like in Refs. 13 and 14.

For the wave amplitude, its tide-induced variations were

about 10% and corresponded to the absolute variations in the

decrement Dh � ð2� 5Þ � 10�3, which means that the strain-

sensitivity of the rocks was so giant that the tidal strains 10�8

were able to produce the relative variations in the decrement

Dh=h � 10�2 � 10�1.

Similar estimates for Dh=h, although less directly, are

confirmed by the field observations of the tidal modulation of

the intensity of received endogenous seismic noises at several

observation sites at the Kamchatka peninsula and in Ja-

pan.16,17 Normally, the weak-amplitude noise with strains

10�10 � 10�12 was recorded by a sensitive narrow-band re-

ceiver around a frequency of 30 Hz. Coherent averaging

(from several weeks to several months) of the noise envelope

made it possible to reliably single out periods of individual

solar and lunar-tide components in the noise-intensity modu-

lation with a typical depth ranged from 2� 3 to 6� 8%. Tak-

ing into account that for rather weak tidal strains e0 � 10�8,

their direct influence on the rock fracturing and the accompa-

nying seismo-acoustic emission does not look very probable,

the observed modulation can readily be explained18 by the

tidal modulation of the effective size of the region from which

the signal at the receiver is collected. This size is determined

by the characteristic damping length for the noise. Thus the

relative variations in the intensity of the received noise should

be proportional to Dh=h. The above-obtained estimate

Dh=h � 10�2 � 10�1 based on the independent direct meas-

urements15 well agrees with the depth of the tidal modulation

of the noise.16,17

Thus various experimental data require an explanation

of the giant value of strain-sensitivity of dissipation in meso-

scopic solids. Because those strain-induced variations in the

dissipation are observed for very small amplitudes of prob-

ing acoustic waves, for which absolute displacements at the

microstructural defects (cracks and contacts) fall into essen-

tially sub-atomic range, the responsible mechanism(s)

should not involve an activation threshold (unlike hysteretic

mechanisms of frictional6,19 or adhesion origin20).

As discussed in previous papers,4,21 pronounced strain-

dependent dissipation in mesoscopic solids should arise due

to combined action of purely elastic nonlinearity of the soft

defects and conventional linear (i.e., viscous-like) dissipation

that is also localized at the same defects because of the locally

strongly enhanced strain rate. This mechanism does not

require a finite threshold (unlike essentially super-atomic dis-

placements required for activation of adhesion/frictional phe-

nomena), although it can act in parallel with hysteretic

mechanisms.

In what follows, we consider physical realizations of

this mechanism that are relevant to solids containing dry and

fluid saturated cracks. In both cases, the dissipation is

threshold-less in amplitude: of thermoelastic origin in dry

and viscous in fluid-filled cracks. In both cases, the key role

is played by the same geometrical features of real cracks for

which corrugated surfaces (having wavy asperities) are typi-

cal rather than smooth nearly plane-parallel form often used

in the dissipation models. The analysis will be performed in

the style of physical argumentation used by Landau and Lif-

shitz22 in the discussion of thermoelastic loss in polycrystal-

line solids and in work.23 Such an asymptotic approach gives

clear representation of the physics of the discussed phenom-

ena and ensures quantitative estimates with a reasonable ac-

curacy comparable with that for formally exact solutions

obtained for idealized (and thus approximate) models like

elliptical cracks, etc.

II. GENERAL CONSEQUENCES OF WAVY
ROUGHNESS OF SURFACES IN REAL CRACKS FOR
STRAIN SENSITIVITY OF DISSIPATION

We emphasize the fact that unlike often assumed near-

parallel geometry, for interfaces of real cracks, wavy (curved)

forms are quite typical,24 which is confirmed by images of

crack-like defects25 in rocks obtained by various methods

and is in agreement with known models of crack initiation.

Such initially coinciding surfaces often are not simply sepa-

rated in the normal direction but also exhibit certain tangen-

tial displacement and create inside the crack elongated

“waists” (either nearly contacting or already contacting) as

shown in Fig. 1. Inside liquid-saturated cracks, the so-created

narrow waist can act for fluid flows as a kind of valve near

which pressure gradients, flow velocities, and the correspond-

ing viscous dissipation in the crack should be localized. For

dry cracks, the thermo-elastic dissipation should also be

strongly localized and enhanced at the inner contacts. In the

vicinity of such wavy asperities, the local separation (or inter-

penetration) ~h of the crack surfaces is significantly smaller

FIG. 1. Schematically shown crack with wavy roughness at the interface (a)

that results in the creation of elongated (strip-like) contacts or waists (b)

inside the crack that may act as a kind of valve for the fluid flow if the crack

is liquid-saturated.
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than the average opening h of the crack. In contrast, the abso-

lute variation in the average opening h and in the local sepa-

ration ~h of loosely contacting crack surfaces are practically

the same, Dh � D~h. Due to this fact, the variations of the

contact pre-strain (or the narrow waist opening) can be

h=~h� 1 times stronger perturbed than the average opening

that determines the loss at the whole crack.

After finding the acoustic loss at one crack the macro-

scopic logarithmic decrement h can be found as the ratio

hðxÞ ¼ W0

2Wac
; (1)

where the energy W0 is dissipated during one period in a unit

volume and Wac ¼ Ke2=2 is the acoustic energy density

stored in the material with the modulus K. In the order-

of-magnitude estimates, it is not critical to specify which

particular modulus is chosen and to take into account the cor-

rection to the denominator related to the modulus reduction

(typically,26 of the order 10�1) due to the presence of cracks.

III. THERMOELASTIC LOSS AT INNER CONTACTS IN
DRY CRACKS

Unlike homogeneous materials for which thermoelastic

dissipation of elastic waves is often negligible, in solids with

microstructure (e.g., polycrystalline22), thermoelastic dissi-

pation significantly increases due to the presence of small

(compared with the elastic-wave length) heterogeneities

that strongly increase temperature gradients. For crack-

containing solids, there is another factor that additionally

strongly enhances the thermo-elastic coupling: the stress-

and strain concentration at the crack perimeter as considered

in work.27 For the thermoelastic loss at the entire crack with

characteristic diameter L, the thermoelastic dissipation

exhibits maximum in the vicinity of the relaxation frequency

fL � j=ð2pqCL2Þ, where q is the material density, C the spe-

cific heat per unit mass, and j the thermal diffusivity. For

millimeter-size cracks in rocks, this maximum corresponds

to frequencies in the range 10�3 � 10�1 Hz. The analysis27

was based on exact solutions for the stress-field distribution

near two-dimensional cracks represented as narrow elliptical

cavities. However, even without specifying details of a par-

ticular crack model and estimating temperature gradients

determined by the crack size in the low-frequency limit and

by the temperature-wave length in the high-frequency limit,

it is possible to evaluate the elastic energy loss using the

approach similar to that used by Landau and Lifshitz22 for

polycrystalline solids.

We start from the thermal diffusivity equation for tem-

perature variations eT with respect to the mean value T0

@ eT
@t
þ j

Cq
DeT ¼ cT0

@e
@t
; (2)

where c ¼ lTK=ðqCÞ is the Gruneisen parameter of the ther-

moelastic coupling, lT is the thermal expansion coefficient,

K is the bulk modulus, e is the material dilatation, which for

the present approximate consideration can be identified with

strain in the field of a compressional wave. The acoustic

energy loss due to irreversible heat flows can be found from

the integral22

@W

@t
¼ � j

T0

ð
reT� �2

dV: (3)

Estimating the gradients in the crack from Eq. (2) and evalu-

ating Integral (3), we obtain the following approximate

expressions for the elastic energy dissipated by the crack

during one oscillation period, which well agree with the as-

ymptotic forms of the results presented in Ref. 27:

WLF
crack � 2pxT0ðl2

TK2=jÞL5e2; for

x� xL �
j

qCL2
;

(4)

WHF
crack � 2pT0

l2
TK2

qC

j
qCx

� �1=2

L2e2; for x� xL; (5)

Wmax
crack � 2pT0ðl2

TK2=qCÞL3e2; for x � xL; (6)

where x is the circular frequency and xL is the characteristic

circular frequency of thermal relaxation determined by the

characteristic diameter L of the crack.

Because we need Eqs. (4) to (6) only for comparison

with similar equations for thermoelastic loss at inner contacts

in cracks, here, we only briefly outline their derivation. First,

note that for sufficiently low frequencies, the crack size L is

much smaller than both the elastic wave length and the ther-

mal wave length kth ¼ ½j=ðCqxÞ	1=2
. Therefore, it is the

scale L that determines the gradients of the temperature varia-

tions in the elastic-wave field, reT � eT=L. Thus in Eq. (2),

we can estimate that DeT � eT=L2 and @ eT=@t � xeT. The con-

dition L� kth is equivalent to x� xL ¼ j=ðqCL2Þ and

thus @ eT=@t� DeT, so that the first term in Eq. (2) can be

omitted. Because @e=@t � xe, Eq. (2) yields the estimate for

the temperature variation eT � xcT0CqL2=j. Then we esti-

mate integral (3) taking into account that the temperature gra-

dient eT=L is localized in the crack vicinity within the

characteristic volume L3. Then one obtains @W=@t � x2T0c2

C2q2L5e2. Finally, for the energy dissipated over one oscilla-

tion period 2p=x, we recover Eq. (4).

In the high-frequency limit when x� xL ¼ j=ðqCL2Þ,
in contrast, the first term @ eT=@t becomes dominant in Eq. (2),

so that the the temperature variations are adiabatic: eT � cT0e
and kth � L. In this case, the dissipation is mainly localized

in the near vicinity of the crack edge in which fairly universal

asymptotic behavior of strain28 has the form ecr � eðr=LÞ�1=2
.

Here, radius r is counted from the crack edge (and the angular

factor in this order-of-magnitude estimate is neglected).

When estimating Integral (3), we have to consider two regions

r 
 kth and r < kth. In the latter region, the formally infinite

strain ecr � eðr=LÞ�1=2
and strain gradient at r ! 0 does not

cause divergence of the integral because the amount of the

generated heat is finite and is smeared within the region

r < kth. As a result, both subregions r 
 kth and r < kth give

functionally identical and approximately equal contributions,
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so that @W=@t � jT0c2L2=kth, and for the loss over one pe-

riod, we recover Eq. (5). Finally, Eq. (6) can be found as the

crossover between Eq. (4) and Eq. (5) at x ¼ xL.

To estimate the expected relaxation frequency, we can

take parameters j � 0:015 W/cm/K and q � 2:6 g=cm3 typi-

cal of quartz-like rocks and consider cracks with L � 1 mm,

which yields fL ¼ x=ð2pÞ � 10�1 Hz. It has been estimated

in works23,27 that thermoelastic losses described by Eqs. (4)

to (6) can account for the observed values of Q-factor in dry

rocks, especially for low seismic frequencies. On the other

hand, it is seen from Eq. (6) that the height of the relaxation

maximum is proportional to the cube of the characteristic

crack size L. Therefore, to explain the typically observed in

dry rocks values Q � 300� 1000 for ultrasonic frequencies

and even for frequencies of the order of 102 � 103 Hz, it is

necessary to assume very high densities of very small cracks

(of micrometer scale); this, however, does not look realistic.

In this context, the above-mentioned narrow inner con-

tacts have much higher relaxation frequencies. However, the

question arises whether such contacts (the volume of which

is much smaller than that for the entire crack) can dissipate

an appreciable amount of the the elastic-wave energy. The

expressions for thermoelastic energy loss at the inner con-

tacts in cracks can be obtained much like Eqs. (4) to (6) by

taking additionally into account the local concentration of

strain at the contacts (see Refs. 29 and 30):

WLF
cont � 2pxT0ðl2

TK2=jÞl2LcL2e2; for x� xl

� j
qCl2

; (7)

WHF
cont � ð2p=xÞjT0ðlTK=CqÞ2LcðL=lÞ2e2; for

x� xl; (8)

Wmax
cont � 2pT0ðl2

TK2=qCÞLcL2e2; for x � xl; (9)

Here, Lc in the length of the strip-like contact, l is its width

and the other notations are the same as for Eqs. (4) to (6),

but the relaxation frequency xl is determined by the width

l� L of the strip-like contact. It is seen from Eqs. (7) to (9)

that for frequencies much lower that the relaxation frequency

xl, the loss is growing as a linear function of x, and for

frequencies much greater than xl, the loss is inversely pro-

portional to x. The asymptotic law x�1 is similar to the

high-frequency asymptotic for spheroidal voids27 rather than

flat cracks.

The most striking conclusion, which is seen from Eqs.

(7) to (9), is that for a strip-like contact with a length Lc � L,

the magnitude of loss in the vicinity of the maximum located

at xl � x is determined by the size of the whole crack

(because LcL � L3). Consequently the maximum loss at such

contact is of the same order as for the conventionally consid-

ered maximum for the entire crack [compare Eqs. (6) and

(9)]. In contrast, the positions of the maxima xl � j=ðqCl2Þ
and xL � j=ðqCL2Þ on the frequency axis can differ in

orders of magnitude. Thus one crack of size L with a strip-

like contact Lc � L of width l� L can produce near the

relaxation peak xl the thermoelastic dissipation comparable

with the contribution of ðL=lÞ3 � 1 small cracks with the di-

ameter l. Taking again an example of quartz-like rock, this

difference is illustrated in Fig. 2 for L=l ¼ 102, which means

that one strip-like inner contact produces the same dissipa-

tion as 106 small cracks of size l.
Matching the asymptotic Eqs. (7) and (8) and assuming

that the density of such cracks with inner contacts equals n0,

one can approximate the decrement defined by Eq. (1) in the

entire frequency range by the the frequency dependence typ-

ical of the classical relaxator:

hcont ¼ 2pT0l2
TKLcL2

qC

x=xl

1þ ðx=xlÞ2
n0: (10)

To find the overall decrement determined by the contribu-

tions of contacts with different parameters L, Lc, and l, we

have to integrate Eq. (10) over the distribution nðL; Lc; lÞ, for

which it is reasonable to assume that the distribution over

the width l should be essentially independent of the distribu-

tion over L and Lc, so that nðL; Lc; lÞ ¼ nðL; LcÞnðlÞ and the

averaging takes the form

hcont ¼ 2pT0l2
TK

qC

ð
LcL2x=xl

1 þ ðx=xlÞ2
nðL; LcÞ nðlÞ dLdLcdl:

(11)

We note that a wide distribution nðlÞ can strongly smooth

the frequency dependence of the dissipation resulting in

nearly constant Q-factor even without assuming very high

densities of tiny cracks.

It is seen from the structure of Eq. (11) that the height of

the relaxation peak and its location on the frequency axis are

quite independent because they are determined by essentially

different parameters (L and Lc for the peak height and l for

the position). Evidently, for sufficiently small variation in

the average strains and stresses, the width of the contacts can

FIG. 2. Schematically shown relative positions and heights of the thermo-

elastic relaxation peaks for the crack of size L as a whole (curve 1), for the

inner strip-like contact of width l� L and length Lc � L (curve 2), and a

peak similar to curve 1, but for a small crack of size l (curve 10). It is

assumed that L ¼ 1 mm and l=L � 10�2.
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already be significantly perturbed, whereas the length of the

contact and the average opening of the crack can be only

slightly affected. This can result in the displacement of the

relaxation maximum on the frequency axis almost without

affecting its height as illustrated in Fig. 3 for the case of

identical contacts. To estimate how strongly the frequency

xl � j=ðqCl2Þ of the maximum of the thermoelastic loss at

such a contact can be perturbed by variation in the mean

strain in the material, let us use the presented in Landau and

Lifshitz22 solution for the width of the contact between two

compressed aligned cylinders:

l � 2
16DF

3p
RR0

Rþ R0

� �1=2

; (12)

where D ¼ ð3=4Þ½ð1� r2Þ=Eþ ð1� r02Þ=E	, r, and r0 are

Poisson’s coefficients of the materials of the cylinders, E and

E0 are the Young’s moduli of the cylinders, and F is the spe-

cific force per unit length of the contacts. In the case of iden-

tical materials with the same accuracy that corresponds to

Eqs.(7) to (10), we can consider that D � 3=ð2EÞ and the

force F per unit length for a contact of length Lc can be

expressed as F ¼ Fc=Lc, where Fc is the total force applied

to the contact. Then from Eq. (12) we obtain

l2 � ð16FcRÞ=ðpELcÞ: (13)

For the force Fc applied to the inner contact in a crack, an

approximate expression Fc=Lc � eEL2=ðLþ LcÞ can be

obtained,30 where e is the mean strain in the material. Then

taking into account that 1=2 � L=ðLþ LcÞ � 1, one obtains

from Eq. (12) the following approximate expressions:

l2 � 16

p
L

Lþ Lc
eRL

� 8

p
eRL;

Dxl

xl

���� ���� ¼ Dðl2Þ
l2
� De

RL

l2
:

(14)

This expression clearly elucidates the reason of the extremely

high sensitivity of l2 (and, consequently, variations in xl)

with respect to the variation De in the mean strain. Indeed,

the wavy asperities at the crack interfaces often have radius

comparable with the characteristic diameter of the entire

crack (R � L), whereas the width of the inner strip-like con-

tact often does not exceed the average opening h of the crack.

Therefore, taking into account the above-discussed character-

istic values of the crack aspect ratios, we conclude that the

factor RL=l2 in Eq. (14) can easily be as great as 106–108.

This means that even variations in the mean deformation

(which are conventionally considered unable to appreciably

influence acoustical parameters of solids) actually can be

able to significantly change the width of inner contacts and

affect the near-contact acoustic loss (see Fig. 3).

Estimating the overall sensitivity of the thermoelastic

dissipation to the mean strain it is necessary to take into

account that conventionally considered thermoelastic losses

at the crack as a whole27 also contribute to the total decre-

ment. We have, however, to recollect that the characteristic

relaxation frequencies xl � j=qCl2 and xL � j=qCL2 are

related as ðL=lÞ2 and the high-frequency thermoelastic loss

at the whole crack decreases as ðx=xLÞ�1=2
[see Eq. (5)] as

illustrated in Fig. 2. Then near the relaxation maximum xl

we found that the ratio of the contributions of the loss

hloc x ¼ xlð Þ at the inner contacts to the conventionally con-

sidered “global” loss hglob x ¼ xlð Þ at the cracks as a whole

has the form

hloc x ¼ xlð Þ
hglob x ¼ xLð Þ �

~ncr

ncr

xl

xL

� �1=2

� ~ncr

ncr

L

l
; (15)

where ~ncr and ncr are the densities of cracks with and without

inner contacts, respectively. Because L=l� 1, it is clear that

even a small portion (e.g., a few percentages) of cracks with

narrow strip-like inner contacts can ensure near x ¼ xl the

same contribution to the decrement as the conventional

global mechanism of thermoelastic dissipation at whole

cracks. Therefore, even quite a small portion of cracks with

contacts can provide the above-discussed extremely high

sensitivity of the dissipation to small variations in the mean

strain in the material.

Even putting aside somewhat exotic manifestations of

the giant stress-sensitivity of the dissipation and considering

only its mean value, it can be emphasized that in the audible

and ultrasonic ranges typical of laboratory studies, inner con-

tacts can ensure a fairly strong contribution to dissipation

comparable with the estimates obtained in works23,27 for the

global thermoelastic loss at a crack as a whole for lower fre-

quencies, which showed a reasonable agreement with the ex-

perimental data.

IV. VISCOUS LOSS AT FLUID-SATURATED CRACKS
WITH INNER STRIP-LIKE WAISTS

Now let us consider viscous dissipation in cracks con-

taining liquids. There is general agreement that along with

the dissipation due to global fluid flows in pore channels

(Biot’s mechanism), an important role in the elastic-wave

FIG. 3. Variation in the shape hðxÞ of the normalized relaxation peak for

an inner contact (curves 1 and 2) due to 15% variation in the contact width.

The variation Dh in the decrement has opposite signs at the opposite sides

from the maximum and peak-to-peak excursion about 15% (curve 3).
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energy dissipation in rocks belongs to the local (or “squirt”)

flows inside cracks.31,32 For the Biot flows, sizes of pore

channels with aspect ratios about unity weakly depend on

the average strain and stress (except of the case33 of Pois-

son’s ratio close to 0:5, which is irrelevant to rocks). It is the

squirt-type dissipation in relatively soft narrow cracks that

demonstrates much higher sensitivity to the variation in the

mean strain in the material. In what follows, we focus on

new important features of strain sensitivity of the squirt

mechanism in the case of cracks with wavy asperities of the

interface.

To estimate the viscous loss in narrow cracks with

nearly parallel surfaces, we will use the integral expression34

for the rate of kinetic energy dissipation in a flow of a vis-

cous fluid between parallel solid planes:

@Wkin

@t
¼ � g

2

ð
@tx

@y

� �2

dV: (16)

In Eq. (16) over the volume of the flow, y axis is orthogonal

to the interface, tx is the X component of the liquid-flow ve-

locity, and g is the viscosity. The integration should be made

over the volume of the flow. Using Eq. (16), we first estimate

the amount of energy W0 dissipated in a unit volume over

one period. The form of W0ðxÞ can again be understood by

using asymptotic estimates by analogy with in the previous

section considering now the linearized Navier–Stokes equa-

tion for tx:

q
@tx

@t
¼ � @p

@x
þ g

@2tx

@y2
; (17)

where p is pressure. In view of similar structures of Eqs. (17)

and (2), the roles of the diffusive term and the term with the

time derivative can be estimated in a very similar way.

To better delineate the place of our mechanism in the

context of conventionally discussed ones, we first recall how

the well-known properties of the global Biot loss in fluid-

filled channels can be derived from very simple arguments

similar to those used in Ref. 35. For low acoustic frequen-

cies, the role of the first inertial term in Eq. (17) is negligi-

ble, so that j@p=@xj � jg@2tx=@y2j, which corresponds to a

fluid motion as a parabolic Poiseuille flow in the channel.

Thus the velocity gradient is determined by the entire chan-

nel thickness H, @2tx=@y2 � tx=H2, and is frequency inde-

pendent. The fluid velocity tx in the Poiseuille flow is

induced by the gradient of the acoustic pressure pac, which is

determined by the acoustic wave length kx / x�1, so that

tx / @p=@x � pac=kx / x. Taking into account that Integral

(16) is evaluated over a frequency-independent volume of

the flow, the corresponding loss over one period 2p=x is

W0 / ð2p=xÞ � x2, so that hðxÞLF / x.

With increasing frequency x, the first inertial term in

Eq. (17) increases and becomes comparable with (and even

greater than) the viscous term. This happens when jxqtxj
� jgtx=H2j, i.e., for the characteristic frequency

xc � g=ðqH2Þ; (18)

which is often expressed in a more indirect way via the ratio

of porosity to permeability instead of the use of the character-

istic width of the channels. The representation of xc in Form

(18) is especially physically clear and means that the viscous

wave length kvisc ¼ ð2g=qxÞ1=2
becomes comparable with

H. For x� xc, the velocity gradient becomes localized near

the walls within the viscous layer kvisc � H, which deter-

mines the flow-velocity gradient, and we have ð@tx=@yÞ2
/ ðx1=2Þ2 / x. Next, because the last viscous term in Eq.

(17) now can be neglected, we see that the velocity tx

becomes proportional to the acoustical pressure amplitude

pac without any frequency-dependent factor because @tx=@t
/ xtx and @p=@x � pac=kx / x both are proportional to x.

Besides, in integral Eq. (16), the intergration should be made

only within the viscous layer with the thickness � kvisc

/ x�1=2 (where the gradient is localized) rather than over the

entire volume of the fluid flow. The resultant frequency de-

pendence of Integral (16) has the form x�1=2ðx1=2Þ2 ¼ x1=2.

The latter estimate should be multiplied by the factor 2p=x
to find the energy loss WHF

0 during one period, so that for

x� xc, we obtain the asymptotic frequency dependence for

the decrement: hðxÞHF / ð2p=xÞx1=2 / x�1=2. Thus we

recovered the well-known asymptotic dependences of the

decrement hðxÞ due to the Biot flows in the pore channels.

Let us now turn to narrow cracks, which are much softer

objects and can exhibit stronger stress-dependence. The

above-considered arguments based on the Poiseuille-flow

approximation in the low-frequency limit remain very simi-

lar for flows in cracks and predict the same asymptotic

behavior of the decrement hðxÞLF / x. As was mentioned

in Ref. 32, the localization of the shear-flow gradients within

a narrow viscous layer � kvisc for sufficiently high frequen-

cies may also be applied to cracks, but the characteristic fre-

quency is much higher because the crack opening h is much

smaller than the diameter H of the pore channels. However,

in contrast to rigid pore channels, cracks are much softer

objects14 with a characteristic own modulus aK � K. For

cracks, the aspect ratio a � h=L plays the role of their soft-

ness parameter: Due to their planar geometry cracks are

roughly a�1 times more compliant than the surrounding ma-

trix with respect to both compression and shear.

Thus for soft crack-like pores, another characteristic

relaxation frequency appears that physically corresponds to

the condition that under sufficiently high-frequency oscilla-

tions, the viscous resistance to crack shearing becomes com-

parable with the elastic response of the crack to shearing.

Namely, under tangential displacement Dx of the center of

the crack, its shear elastic reaction alDx=h should be com-

pared with the tangential viscous stress gxDx=h. This yields

a characteristic frequency

xd � al=g; (19)

which was pointed out, for example, in Ref. 36. Now we

note that for geophysical materials, typically the values of

the shear modulus l and compression modulus K are of the

same order, and the corresponding xd is relatively high. For

example, for viscosity g ¼ 10�3 Pa � s typical of water, mod-

ulus l � 1010 N=m
2

typical of rocks and quite narrow cracks
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with a � 10�3 � 10�4 we obtain xd � 109 � 1010 rad/s rele-

vant only to ultrasonic laboratory studies but not to the dis-

cussed seismo-acoustic data.11,15–17

One more characteristic frequency can be obtained in a

similar way but considering the viscous resistance of a

crack-like defect to compression in the direction normal to

its plane. This viscous resistance should be compared with

the elastic reaction of the crack also in the normal direction.

To estimate the normal viscous resistance, we have to sup-

plement Eq. (17) with the continuity equation

@tx

@x
þ @ty

@y
¼ 0; (20)

because in the first approximation, the liquid can be consid-

ered incompressible. For the discussed nearly Poiseuille flow,

@tx=@x � tx=L and @ty=@y � ty=h, so that from Eq. (20) we

obtain tx � ðL=hÞty. Because the variation Dh of the crack

opening in the acoustic field corresponds to ty � xDh, we

find that tx � ðL=hÞxDh. Next, in Eq. (17), we can similarly

estimate that @p=@x � p=L and g@2tx=@y2 � gtx=h2.

Neglecting the first inertial term in Eq. (17) for the Poiseuille

flow and equating the above-estimated terms in the right-hand

side of Eq. (17), we obtain the estimate for the pressure pvisc

induced by the viscous flow of the liquid in the narrow gap:

pvisc � gtxðL=h2Þ � gxðL=hÞ2ðDh=hÞ: (21)

For the application to real cracks, it is important to under-

stand how critical is imperfect parallelism of the crack surfa-

ces (which for real cracks is rather a rule). Assuming that the

crack opening has the values h1 and h2 at the opposite sides,

we conclude that, in the extreme case when at one side the

h1 ¼ 0, the maximal non-parallelism angle is of the order

h=L � a, where h is the average crack opening. This small

non-parallelism is not important for the above-obtained esti-

mates of the terms entering Eqs. (17) and (20) and conse-

quently estimate Eq. (21).

On the other hand, one may argue that this non-

parallelism leads to the fact that the shear viscous force acting

along the inclined wall has a component normal to the crack

plane. The viscous stress svisc acting along the inclined plane

is readily estimated as svisc � gtx=h � gðL=hÞxDh=h, so that

its normal component is svisc
n � svisca � gxDh=h. Comparing

the estimated normal component svisc
n and Eq. (21) for the

pressure due to the viscous flow, we see that pvisc is

1=a2 >> 1 times greater than svisc
n . Thus the contribution svisc

n

of the eventual non-parallelism to the normal viscous stress is

not significant compared with pvisc, and we can use Eq. (21)

for the normal viscous reaction even for cracks with not per-

fectly parallel surfaces.

Now we have another question: What is the elastic reac-

tion that should be taken for comparison with the precedingly

found value [Eq. (21)] for the viscous normal resistance. In

literature different variants can be found. One variant is by

analogy with obtaining Eq. (19) to compare Eq. (21) with the

normal elastic reaction � aK � Dh=h of the crack related to its

effective compression modulus � aK. The latter value corre-

sponds to the well known rule of thumb24 that the effective

softness relatively to the matrix material for a crack approxi-

mately equals its aspect ratio. This comparison gives us some

characteristic frequency often discussed in literature25

xK � a3K=g: (22)

Less formally, it can be said that the viscous flow pressure

pvisc arisen due to approaching of the crack surfaces by Dh
[see Eq. (21)] becomes so high that the near-crack region of

the size L (where the elastic stress was initially nearly

released) experiences compression by the value Dh� � pvisc

=ðKLÞ. For x � xK , the value of Dh� becomes comparable

with the initial approaching Dh and strongly compensates the

latter. If the crack is “instantaneously” compressed, initially

the liquid remains almost “frozen” and then is redistributed

during the characteristic time 1=xK when the elastic compres-

sion Dh� of the near-crack region gradually releases. For suffi-

ciently high frequency x� xK , the actually displaced

volume of the liquid is equal to a small fraction xK=x of the

volume that would be quasistatically displaced, so that if the

flow structure remains of the Poiseuille type, the amount of

the dissipated energy W0 during one period decreases as

ðx=xKÞ�1
. This observation will be used in the following text

to estimate the absorption above the relaxation maximum.

It can also be pointed out that besides the relaxation fre-

quency given by Eq. (22), another relaxation frequency for

cracks filled by compressible fluids is also discussed.31

Namely, in view of the fact that modulus Kf of the filling

fluid typically is at least an order of magnitude smaller than

modulus K, it can be argued that the surrounding rock in the

first approximation compresses the fluid as “absolutely rigid”

body. Thus comparing the pressure of the compressed fluid

Kf Dh=h with the precedingly found normal viscous reaction

[Eq. (21)] of the fluid flow, we obtain another characteristic

frequency xr � Kf a2=g, which is determined by the com-

pressibility of the fluid and in contrast to Eq. (22) does not

depend on the modulus of the rock.37 This new relaxation

frequency differs from xK given by Eq. (22) by a factor of

Kf=ðKaÞ. For narrow cracks with a� 1 and typical liquids

like water or oil, for which Kf =K � 10�1, the factor

Kf=ðKaÞ is quite large, so that xr � xK . In such a case,

long before the frequency xr would be attained, the fluid

flow should already be strongly damped for x > xK because

of the finite rigidity of the near-crack region as discussed in

the preceding text. Therefore the initial low-frequency as-

ymptotic / x cannot be extrapolated till the frequency

xr � xK . Consequently, the new (and potentially stronger)

relaxation maximum near xr simply will not be formed for

typical liquids (like water and oil), for which Kf=ðKaÞ � 1.

Only for sufficiently high-compressible (gaseous) fluids with

Kf=ðKaÞ < 1 this mechanism should form the relaxation

maximum near xr. But in this case, the relaxation frequency

xr should necessarily lie lower than xK .

Less formally, the physical meaning of this type of

relaxation is that a finite time is required for a compressible

fluid squeezed inside a crack to form the flow that redistrib-

utes the fluid and equalizes the internal pressure. In any case,

the character of such flows can noticeably be perturbed only

if the mean opening of the entire crack is perturbed. This
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means that the mean perturbing strain should already be

comparable with a like for the above-considered global ther-

moelastic loss.

In what follows, we consider a modified form of the vis-

cous loss in cracks with wavy roughness of the surface. This

mechanism relates to the conventionally considered viscous

loss at cracks much like the thermoelastic loss at the inner

contacts relate to the thermoelastic loss at a crack as a whole.

We show that even for “normal” liquids, the new strongly

shifted to lower frequencies and very intense relaxation peak

is related to the fluid compressibility rather than compressi-

bility of rock in the crack vicinity. Besides, which is espe-

cially interesting, the stress sensitivity of such a mechanism

can be additionally enhanced orders of magnitude and can

readily explain the experimental data discussed in the

introduction.

Consider a crack with a waist’ created by wavy asper-

ities as shown in Fig. 4. The notations used are clear from

the figure. Here, quantities Pi characterize the pressure in the

respective cross sections of the crack. Assuming again the

Poiseuille character of the flow for sufficiently low frequen-

cies, the nearly plane fluid flow q ¼ Lz t xðyÞdy in the main

part of the crack and in the narrower region of the waist

should be equal:

q ¼ h3Lz

12g
P2 � P1

L
¼

~h3Lz

12g
P3 � P2

~l
; (23)

where the meaning of the pressure gradients ðP2 � P1Þ=L
and ðP3 � P2Þ=~l is clear from Fig. 4. Then Eq. (23) yields

P2 � P1

P3 � P2

�
~h3

h3

L
~l
; (24)

so that for sufficiently narrow waist in the crack,

ð~h3=h3ÞðL=~lÞ � 1, we conclude that ðP2 � P1Þ � ðP3 � P2Þ
� DPtot, that is, the total drop DPtot of pressure is mainly

localized in the region of the narrow waist. Now imagine an

instantaneous slight compression of the crack under an exter-

nal action after which the fluid compressed inside the crack

flows through the narrowing into the outer region to equalize

the pressure. This flow will exponentially decrease with a

characteristic relaxation time s. Consequently the total vol-

ume qs of the leaked fluid during this relaxation process is

given by the integral31

qs ¼ q

ð1
0

expð�t=sÞdt ¼ qs; (25)

where q is the flow value corresponding to the initial excess

of pressure inside the crack over the pressure in the outer

space. Because the rigidity of the outer pore space is much

greater than that of the thin crack, the relative change in the

volume of the crack is much greater than that for the outer

rigid pore channels. Consequently, the outer pore pressure

remains close to its equilibrium value P0, and we can con-

sider that P3 � P2 � P1 � P4 � P1 � P0. Thus from Eq.

(23) the initial value of the flow is

q ¼
~h3Lz

12g
P3 � P2

~l
�

~h3Lz

12g
P1 � P0

~l
: (26)

Because the variation v in the volume of the liquid and the

pressure P are related via the bulk modulus Kf of the liquid,

P ¼ vKf , then the total liquid volume qs ¼ qs displaced in

order to equalize the pressure can be written via the initial

volume C0 of the fluid-filled crack as

qs ¼ C0ðv1 � v0Þ ¼ C0K�1
f ðP1 � P0Þ: (27)

Equations (26) and (27) yield

qs ¼
~h3Lz

12g
Kf ðv1 � v0Þ

~l
s � C0ðv1 � v0Þ: (28)

Assuming that the sizes of cracks along x and z directions

are of the same order Lz � L, the crack volume can be esti-

mated as C0 � hL2, so that from Eq. (28) we readily obtain

the relaxation time ~s and its inverse value, i.e., the relaxation

frequency exr (tilde denotes that we consider the crack with a

narrowing):

exr ¼
a2Kf

12g

~h

h

� �3
L
~l
; and ~s ¼ 12g

a2Kf

h
~h

� �3 ~l

L
: (29)

Here we intentionally singled out the squared aspect ratio

a2 for convenience of comparison with the crack without

waists.31 The absence of the narrow waist can be interpreted

as ~l � L and ~h � h, i.e., ð~h=hÞ3~l=L � 1, so that Eq. (29)

reduces to

xr ¼
a2Kf

12g
; and s � 12g

a2Kf
: (30)

Within the accuracy of its derivation, Eq. (30) coincides

with the result s � 8g=a2Kf obtained in Ref. 31 for narrow

cracks without the waist.

The relaxation times in Eqs. (29) and (30) do not depend

on the elastic modulus of the solid matrix. However, we

have already mentioned that for cracks with uniform open-

ing, the relaxation peak [Eq. (3)] can actually be formed

only for very highly compressible fluids (i.e., gases rather

than liquids), for which Kf =K � a, otherwise the

FIG. 4. Schematically shown crack with a narrow strip-like waist created

by wavy asperities. The dominant part of the total difference in the pressure

jP1 � P4j in the fluid flow is localized near the narrow waist, so that

jP1 � P4j=jP3 � P2j � 1. P4 is close to the equilibrium pressure P0 in the

outer pore channel.
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compressibility of rock in the crack vicinity should dominate

and form the relaxation peak near xK given by Eq. (22).

In contrast to this, the presence of the narrow waist cre-

ates a strong obstacle for the fluid leaking. Therefore, for a

given frequency, this increases the role of the liquid com-

pression, whereas the pressure pvisc and the deformation of

the rock in the crack vicinity is strongly reduced. All this

results in a very strong reduction of the relaxation fre-

quency exr related to the compressibility of the fluid [com-

pare Eqs. (30) with Eq. (29) containing the additional small

factor ð~h=hÞ3~l=L� 1]. Thus even for “normal” liquids like

water and oil, the frequency exr of the new relaxation maxi-

mum becomes comparable and even lower than xK , that is,

shifts from ultrasonic frequencies to the seismoacoustic

range directly relevant to the experiments11,13–16 discussed

in the Introduction.

Compared with the mean crack opening h, the local

opening ~h of the waist is much more sensitive to variations

in the mean strain in the medium.

Therefore it is not necessary to assume the existence of

unrealistically thin cracks to ensure the same sensitivity for

the mean opening of the crack. The conditions ensuring the

Poiseuille type of the flow are even better fulfilled in the vi-

cinity of the waist, so that we can apply the considered in the

beginning of this section arguments concerning the low- and

high-frequency asymptotic behavior of the energy loss W0

per one period (proportional to x and 1=x, respectively).

This means that the dissipation due to the discussed mecha-

nism can be well approximated by the frequency dependence

for a standard relaxator:

h � h0

x=exr

1þ ðx=exrÞ2
; (31)

where the relaxation frequency exr is given by Eq. (29) for a

crack with a narrow waist.

Now, using Eq. (16) we will determine the prefactor h0

in two cases: for a crack with the narrow waist and for a sim-

ilar in size crack with uniform opening, although in the latter

case, the formation of the relaxation peak xr can be possible

only if Kf=K � a, that is, for gaseous fluids (or for unrealisti-

cally rigid solid matrix in the case of normal liquids). Never-

theless, such an expression will be useful for comparison.

The velocity profile for the Poiseuille’s flow in the crack

with uniform opening h has a parabolic form

tx ¼ �
1

2g
@P

@x
yðh� yÞ ¼ �4tmax

yðh� yÞ
h2

; (32)

where tmax ¼ �1=8gj@P=@xjh2 is the maximal velocity of

the fluid in the flow. Similarly, for the narrow waist, where

the losses and gradients are localized, we have

~tx ¼ �
1

2g
@P

@x
yð~h� yÞ ¼ �4~tmax

yð~h� yÞ
~h2

; (33)

where ~tmax ¼ �1=8gj@P=@xj~h2. Equations (16), (32), and

(33) yield for @Wkin=@t the following expressions in the dis-

cussed two cases of the crack without and with the waist:

@Wkin

@t
¼ � 8

3
gt2

max

LxLz

h
(34)

@ eWkin

@t
¼ � 8

3
g~t2

max

~lLzeh : (35)

In the estimates in the following text, we will assume that

Lx � Lz � L.

Let us now relate the parameters of the flow with the

mean strain in the crack-containing solid. When the mean

macroscopic strain e is created in the material, the crack vol-

ume correspondingly changes, which creates the flow of the

liquid inside the crack. We recall24 that the crack is a soft

object the relative (compared with the surrounding matrix)

compliance f of which is approximately equal to the crack as-

pect ratio, f � a � h=L. Therefore the own strain ecr of the

crack (i.e., the relative variation in its volume) can be esti-

mated as ecr � e=a � eL=h, where L is the characteristic size

of the crack. For the crack volume C0, we already used the

estimate C0 � L2h in the discussion of Eq. (28). Then for var-

iation DC0, one obtains DC0 � ecrC0 � eL2h � ðL=hÞ ¼ eL3.

Under sinusoidal oscillatory variation of the crack volume

with frequency x and amplitude DC0, we can readily relate

the rate xDC0 of the crack-volume variation with the maxi-

mum velocity of the Poiseuille’s flow of the fluid inside the

cracks without and with the waist:

tmax ¼
3

2

xeL2

h
(36)

~tmax ¼
3

2

xeL2

~h
: (37)

Substituting these expressions into Eqs. (34) and (35) for

cracks without and with the waist, we relate the period-

averaged amounts of the dissipated energy with the ampli-

tude of the mean strain e:

@Wkin

@t

� �
aver

¼ �3gx2e2 L6

h3
; (38)

@ ~Wkin

@t

� �
aver

¼ �3gx2e2 L5 ~leh3
: (39)

In Eqs. (38) and (39), we took into account that for sinusoidal

strain with amplitude e, the period-averaged value of its

square equals e2=2. We also take into account that the

energy loss during one period T ¼ 2p=x is W0 ¼ ð2p=xÞ
ð@Wkin=@tÞaver, and the density of the accumulated elastic

energy is Wel � Ke2=2 (because in the used approximation,

we assume that the elastic modulus does not significantly

change due to the presence of the cracks). Then from Eq. (1)

we obtain the following asymptotic low-frequency expression

for the decrement in the case of cracks without the waists:

hLF ¼ 6pg
L6

h3K
ncrx: (40)
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The low-frequency Eq. (40) is obtained neglecting the liquid

compressibility and agrees with the low-frequency results

earlier derived for cracks without waists.32

To find high-frequency expressions (for x >> xr), we

recall that because of the finite relaxation time, the volume

of the replaced liquid is x=xr times smaller than in the low-

frequency limit. Thus the high-frequency expression for the

cracks without the waists is

hHF ¼ 6pg
L6

h3K
ncrx

x2
r

x2
¼ p

2
ncrL

3 Kf

aK

xr

x
: (41)

For cracks with the waists in a similar way, we obtain:

ehLF ¼ 6pg
L6eh3K

el
L

 !
~ncrx; (42)

ehHF ¼ 6pg
L6eh3K

~l

L

� �encrx
ex2

r

x2
¼ p

2
encr

L3Kf

aK

exr

x
: (43)

Comparing Eqs. (40), (41), and (42), and (43) with the low-

and high-frequency asymptotics of Eq. (31), we obtain the

following relaxator-like expressions for the viscous loss at

cracks without and with the waists, respectively:

h ¼ p
2

Kf L
3

Ka
ncr

x=xr

1þ x=xrð Þ2
; (44)

~h ¼ p
2

Kf L
3

Ka
~ncr

x=exr

1þ x=exrð Þ2
; (45)

where xr and exr are given by Eq. (29).

A striking feature of Eqs. (44) and (45) is that they have

the same maximum values determined by the characteristic

size L of the whole crack. However, the relaxation frequency

in Eq. (45) is strongly shifted from ultrasonic to seismoa-

coustic frequencies down to 100 � 102 Hz that were used in

field experiments.11,15,16

The next point is that much smaller average strains

(e.g., the above-discussed tidal strains) can already notice-

ably affect the opening of the waist. This means that due to

the variation in the relaxation frequency exr for the crack

with the waist, the position of the relaxation maximum can

noticeably be changed, whereas the height of the relaxation

maximum should remain yet practically unperturbed. Taking

into account the equality of the absolute variations D~h � Dh
and the relationship ecr ¼ e=a ¼ eL=h (which we have al-

ready used in the preceding text), we find the relative varia-

tion in the relaxation frequency exr caused by the variation

De in the mean strain:

Dexr=exr ¼ De
dexr

de
1exr
� De

3heh ðL=hÞ ¼ De
3heh 1

a
: (46)

The parameter ð3h=ehÞ=a can be very large, for example,

ð3h=ehÞ=a � 106 for quite realistic a � 10�4 and ðh=~hÞ
� 20::30. Thus the tidal strains with amplitude e0 � 10�8 can

cause the peak-to-peak variation in the relaxation frequency

2Dexr=exr of several percent and, consequently, comparable in

magnitude variation 2D~h=~h of the decrement at the wings of

the relaxation curve.

In addition, there are known experimental indications

that for flows in very narrow gaps (down to nanometer

scale), the effective viscosity of the liquid can noticeably

exceed the viscosity for macroscopic gaps.38,39 This effect

can additionally enhance the variations in the dissipation due

to variations in the waist opening. Because small variations

in the average strain practically do not yet affect the average

aspect ratio for the crack, the prefactor in Eq. (45) remains

almost unchanged. Thus the shift of the relaxation maximum

can cause the variation in D~h of opposite signs depending on

the position of the observation frequency x relative to the

frequency exr of the relaxation-curve maximum. The similar

feature for the thermoelastic loss is illustrated in Fig. 3.

Because not all cracks have the strip-like waists, the key

question is how many such cracks are required to ensure near

the characteristic frequency exr the dissipation h � 10�2

�10�1 typical of rocks. For x ¼ exr, Eq. (45) yields the fol-

lowing estimate of the loss

~hmax ¼
p
4

Kf L
3

Ka
~ncr ¼

p
4

Kf

Ka
~e; (47)

where we singled out the quantity ~e ¼ L3~ncr. The latter is

close to the effective volume of cracks40 (i.e., the volume of

the circumscribed spheres independent of the cracks’ aspect

ratios). For further estimates, we will use the well known

fact that the presence of cracks with the effective volume ~e
results in reduction of the elastic moduli of the material by a

fraction of a~e (where factor a � 1 slightly differ for particu-

lar moduli40). Then taking for filling water Kf ¼ 2:25 � 109

Pa, modulus K ¼ 3:8 � 1010 Pa typical of quartz, and

a ¼ 10�3 � 10�4, we find that ~hmax � ð50� 500Þ~e. This

means that for the effective crack density ~e ¼ 10�2 � 10�3,

which reduces the elastic moduli also by a fraction of order

10�2 � 10�3, we can already obtain ~h � 10�2 � 10�1 in the

vicinity of the relaxation frequency exr. On the other hand, it

is well known that, e.g., in real sandstones, the modulus

reduction due to soft crack-type porosity can be on the order

of tens of percentages.26 This means that even if only a small

portion of all cracks (a few percent or even less) has wavy

surfaces creating the narrow waists, this portion can already

be sufficient to explain both the background value of dissipa-

tion observed in the seismo-acoustic frequency range

100 � 103 Hz and its extremely high strain-sensitivity indi-

cated by the experimental data.11,15,16

Therefore the considered modified mechanism of the

squirt-type dissipation in cracks suggests a plausible alterna-

tive explanation to the experimentally observed rather high

dissipation in the seismoacoustic frequency range. In terms

of Ref. 41, our mechanism is of purely “microscopi” type

and does not require the presence of larger-scale (mesoscale)

heterogeneities assumed in the “patchy saturation” models to

shift the frequencies of viscous relaxation towards the seis-

moacoustic frequency range. Certainly such mechanisms can

operate simultaneously. However, among those possibilities,
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only the above-considered modified squirt mechanism is evi-

dently able to ensure sufficiently high strain sensitivity to

explain the observations.11,15,16

To better understand the ratio of contributions of the

conventional and the proposed modified squirt mechanisms,

let us compare the corresponding decrements given by Eqs.

(44) and (45) in the vicinity of the characteristic relaxation

frequency x � exr of the cracks with the narrow waists.

Because xr � exr , for this comparison, we take the low-

frequency asymptotic form of Eq. (44), such that in the vi-

cinity of exr we obtain

hðx � exrÞ � 2
ncr

~ncr

exr

xr

~hmax; (48)

where the difference in the relaxation frequencies x and exr

[see Eqs. (29) and (30)] can be rather large: x=exr

¼ ðh=~hÞ3ð~l=LÞ � 1. The factor ðh=~hÞ3ð~l=LÞ can easily reach

102–104, so that quite a small portion of cracks with narrow

waists can ensure in the low-frequency range a contribution

comparable with or even strongly exceeding the contribution

of the majority of other cracks of the same size but without

the waists. For example, a portion ~ncr=ncr � 10�2 � 10�4 of

cracks with narrow waists is already able to ensure

extremely high strain-sensitivity of the overall decrement in

the seismo-acoustic range.

Figure 5 illustrates the relative positions and heights of

the relaxation peaks corresponding to the relaxation fre-

quency exr [Eq. (29)] for a crack with a narrow waist, and

the peaks at frequencies xK [Eq. (22)] and xr [Eq. (33)] for

cracks with the same aspect ratio a and size L but without

waists. We emphasize that for xK < xr, the relaxation peak

at xr actually does not exist and is shown by the dashed line.

However, it is shown for convenience of comparison with

the low-frequency peak exr, for which the height is the same

as for the would-be peak at xr. The figure demonstrates that

the viscous relaxation in cracks with the waists can form

extremely strong peaks in the seismo-acoustic frequency

range, so that even for small density of such cracks, their

contribution can easily account for the typically observed

levels of the dissipation in this frequency range.

Concerning the question of averaging over the distribu-

tion of real cracks over their parameters, we can put forward

very similar arguments as for Eq. (11) in the above-

considered case of thermoelastic loss. Namely, it is reasona-

ble to assume that the distributions over the sizes L and h of

the crack as a whole and the distribution over the local pa-

rameters ~h and ~l of the waist (which determine the character-

istic relaxation frequency exr) are essentially independent

and can be factorized. Therefore the averaging over the char-

acteristic size L of the crack gives only a numerical factor

like in integral Eq. (11), whereas the averaging over the

relaxation frequencies (of, equivalently, the relaxation times)

can also be performed independently. Such averaging should

not radically change the conclusions obtained for the sim-

plest case of cracks with identical parameters of the inner

contacts or waists.

V. CONCLUSION

The performed analysis of the role of elongated inner

contacts and waists in cracks significantly changes the con-

clusions based on conventionally discussed models of ther-

moelastic dissipation at cracks (like Refs. 23 and 27) and

viscous squirt loss (like works 25, 31, 32, 36, and 41). Thus

a single larger crack with a strip-like contact can ensure the

same thermoelastic dissipation as 105 � 106 small cracks of

the size equal to the contact width.

For fluid saturated cracks, a rather intense maximum

formed by a crack with a narrow waist can ensure the same

dissipation in the seismo-acoustic frequency range of

102 � 103 Hz as a similar crack without the waist would pro-

duce in the ultrasonic range according to conventional

squirt-dissipation models (see Fig. 5). This can substantially

affect some conclusions41 on insignificant role of local vis-

cous loss at cracks in the seismo-acoustic range.

Probably the most striking feature of the considered

modified dissipation mechanisms is their giant strain sensitiv-

ity. In this context, it should be clearly understood that each

group of cracks with the wavy asperities can exhibit this giant

strain sensitivity only in a rather narrow strain range. When

the waist becomes either completely closed or widely open,

the loss at such cracks does not much differ from that at

cracks without the asperities. Nevertheless, because the pa-

rameters of real cracks should have a rather wide distribution,

for a current mean strain, another portion of cracks with such

narrow waists or contacts can be “activated.” This resolves

the problem14 of how apparently very soft defects exhibiting

giant strain sensitivity can exist under very different mean

pressures (in a wide range of depths in field conditions). Their

giant effective compliance should be understood as differen-

tial. It cannot be directly extrapolated for significantly higher

strains 10�6 � 10�4 quite typical of laboratory experiments or

real tectonic strains. For such strains, the dissipation does not

change many times, although for 10�8 the variations may al-

ready reach several percentages.

FIG. 5. Schematically shown relative positions and heights of the viscous

relaxation peaks at xr and xK for the crack as a whole (curves 1 and 10) and

the low-frequency peak for a crack of the same size L having an inner nar-

row waist with the local opening ~h and length ~l (curve 2). The examples cor-

respond to ðh=~hÞ3ð~l=LÞ ¼ 104 and a ¼ 10�3.
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