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Mechanisms of acoustic energy dissipation in heterogeneous solids attract much attention in view
of their importance for material characterization, nondestructive testing, and geophysics. Due to the
progress in measurement techniques in recent years, it has been revealed that rocks can demonstrate
extremely high strain sensitivity of seismoacoustic loss. In particular, it has been found that strains
of order 1073 produced by lunar and solar tides are capable of causing variations in the seismoa-
coustic decrement on the order of several percent. Some laboratory data (although obtained for
higher frequencies) also indicate the presence of very high dissipative nonlinearity. Conventionally
discussed dissipation mechanisms (thermoelastic loss in dry solids, Biot and squirt-type loss in
fluid-saturated ones) do not suffice to interpret such data. Here the dissipation at individual cracks
is revised taking into account the influence of wavy asperities of their surfaces quite typical of real
cracks, which can drastically change the values of the relaxation frequencies and can result in giant
strain sensitivity of the dissipation without the necessity of assuming the presence of unrealistically
thin (and, therefore, unrealistically soft) cracks. In particular, these mechanisms suggest interpreta-
tion for observations of pronounced amplitude modulation of seismo-acoustic waves by tidal

strains. © 2012 Acoustical Society of America. [DOI: 10.1121/1.3664079]

PACS number(s): 43.25.Ba, 43.25.Dc, 43.25.Ed [OAS]

. INTRODUCTION

In recent years, much attention has been paid to the so-
called mesoscopic nonlinear elasticity' of solids containing
such structural features as cracks, contacts, intergrain
aggregates of dislocations, etc. that are small in the scale of
the elastic wave length. Quite often the quadratic
nonlinear-elastic parameter 3 for such materials can be
10° — 10* in contrast to  ~ 10° typical of ideal crystals of
homogeneous amorphous solids. The common feature of
the above-mentioned structural features defects is their
very high relative softness compared with that of the sur-
rounding homogeneous material. Thus the local strains at
the defects are strongly (often by several orders of magni-
tude) enhanced, which results in strongly increased macro-
scopic elastic nonlinearity. This mechanism of strongly
increased structurally induced nonlinear elasticity can be
instructively elucidated using distributed rheological-level
models.*?

In many cases, adhesion or frictional effects are also
localized at those soft defects; this makes the resultant nonli-
nearity hysteretic.' In recent years, increasing attention has
also been paid to nonlinear-dissipative properties of meso-
scopic solids, which manifest themselves in rather pro-
nounced variations in the dissipation of one elastic wave in
the presence of another wave®” or an applied (quasi)static
stress (although the very fact of pressure dependence of dis-
sipation or its dependence on the acoustic wave amplitude in
rocks has been known for years®’). The most striking feature
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is that quite moderate strains & ~ 107® — 107> are able to
cause variations in the decrement up to tens of percentages
or even several times,”®'” whereas the accompanying varia-
tions in the elastic moduli are on the order ¢ and do not
exceed 1072 — 1073,

In addition to laboratory measurements, even more giant
strain sensitivity of the dissipation is indicated by some field
data. For example, in experiments'' on long-range (357 and
430 km) propagation of monochromatic elastic wave produced
by high-stability vibration sources operating at frequencies of
5 — 7 Hz, the accuracy of the measurements was sufficient to
single out periodic variations in the received-signal parame-
ters that were well-correlated with the periodicity of the
lunar-solar tides. For tidal strains in the Earth crust, the char-
acteristic amplitude'” is ~ 10~%, whereas in observations in
Ref. 11, the variations of the received-signal amplitude
amounted to 2 — 4 percent and 1 — 2° for the signal phase.
These values correspond to the path-averaged relative varia-
tions in the elastic modulus AE/E ~ 107> and absolute varia-
tions in the decrement A0 ~ 3 - 107, which are of the same
order of magnitude. Assuming a reasonable®”’ for moderately
cracked rocks decrement 0 ~ (0.3 — 1) - 1072 (i.e., the qual-
ity factor Q = /0 ~ 100 — 300), we estimate that the rela-
tive variation in the decrement is A0/0 ~ 0.3 -107% and is
over two orders of magnitude greater than AE/E ~ 1075,

Taking into account that the tidal strain gy ~ 1078, we
obtain the path-averaged estimate for the quadratic nonlinear
parameter f§ = (AE/E)/&y ~ 500 — 700, which is not so
high as B ~ 107 reported, for example, in the pioneering
observations'>'* of the tidal variations in the elastic-wave
velocities. The above-estimated smaller value of /5 is not sur-
prising because in the long-range experiments,'' the wave
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path reached depths of several tens of kilometers where the
high pressure of the overburden rock layers closed soft cracks
and significantly reduced the path-averaged nonlinearity of
the rocks.

Much higher (comparable with the data in Refs. 13 and
14) values of f§ were observed in cross-well experiments'”
with a high-stability downhole seismo-acoustic source operat-
ing at a frequency of 167 Hz, the propagation distance 360 m
with the estimated wave velocity along the path about
3000 m/s. In other Work,15 the tide-induced variations for the
wave phase were about 0.05 rad, and elastic-modulus varia-
tions AE/E ~ 1073, which indicated the nonlinearity parame-
ter f = (AEJE)/eg ~ (1 —2)-10° like in Refs. 13 and 14.
For the wave amplitude, its tide-induced variations were
about 10% and corresponded to the absolute variations in the
decrement A0 ~ (2 — 5) - 1073, which means that the strain-
sensitivity of the rocks was so giant that the tidal strains 108
were able to produce the relative variations in the decrement
AO/O ~ 1072 — 107",

Similar estimates for A0/0, although less directly, are
confirmed by the field observations of the tidal modulation of
the intensity of received endogenous seismic noises at several
observation sites at the Kamchatka peninsula and in Ja-
pan.'®!'” Normally, the weak-amplitude noise with strains
10719 — 10712 was recorded by a sensitive narrow-band re-
ceiver around a frequency of 30 Hz. Coherent averaging
(from several weeks to several months) of the noise envelope
made it possible to reliably single out periods of individual
solar and lunar-tide components in the noise-intensity modu-
lation with a typical depth ranged from 2 — 3 to 6 — 8%. Tak-
ing into account that for rather weak tidal strains &y ~ 1078,
their direct influence on the rock fracturing and the accompa-
nying seismo-acoustic emission does not look very probable,
the observed modulation can readily be explained'® by the
tidal modulation of the effective size of the region from which
the signal at the receiver is collected. This size is determined
by the characteristic damping length for the noise. Thus the
relative variations in the intensity of the received noise should
be proportional to A0/0. The above-obtained estimate
A0/0 ~ 1072 — 10~! based on the independent direct meas-
urements'> well agrees with the depth of the tidal modulation
of the noise.'®"’

Thus various experimental data require an explanation
of the giant value of strain-sensitivity of dissipation in meso-
scopic solids. Because those strain-induced variations in the
dissipation are observed for very small amplitudes of prob-
ing acoustic waves, for which absolute displacements at the
microstructural defects (cracks and contacts) fall into essen-
tially sub-atomic range, the responsible mechanism(s)
should not involve an activation threshold (unlike hysteretic
mechanisms of frictional®'? or adhesion originzo).

As discussed in previous papers,**' pronounced strain-
dependent dissipation in mesoscopic solids should arise due
to combined action of purely elastic nonlinearity of the soft
defects and conventional linear (i.e., viscous-like) dissipation
that is also localized at the same defects because of the locally
strongly enhanced strain rate. This mechanism does not
require a finite threshold (unlike essentially super-atomic dis-
placements required for activation of adhesion/frictional phe-
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nomena), although it can act in parallel with hysteretic
mechanisms.

In what follows, we consider physical realizations of
this mechanism that are relevant to solids containing dry and
fluid saturated cracks. In both cases, the dissipation is
threshold-less in amplitude: of thermoelastic origin in dry
and viscous in fluid-filled cracks. In both cases, the key role
is played by the same geometrical features of real cracks for
which corrugated surfaces (having wavy asperities) are typi-
cal rather than smooth nearly plane-parallel form often used
in the dissipation models. The analysis will be performed in
the style of physical argumentation used by Landau and Lif-
shitz?* in the discussion of thermoelastic loss in polycrystal-
line solids and in work.>* Such an asymptotic approach gives
clear representation of the physics of the discussed phenom-
ena and ensures quantitative estimates with a reasonable ac-
curacy comparable with that for formally exact solutions
obtained for idealized (and thus approximate) models like
elliptical cracks, etc.

Il. GENERAL CONSEQUENCES OF WAVY
ROUGHNESS OF SURFACES IN REAL CRACKS FOR
STRAIN SENSITIVITY OF DISSIPATION

We emphasize the fact that unlike often assumed near-
parallel geometry, for interfaces of real cracks, wavy (curved)
forms are quite typical,”* which is confirmed by images of
crack-like defects® in rocks obtained by various methods
and is in agreement with known models of crack initiation.
Such initially coinciding surfaces often are not simply sepa-
rated in the normal direction but also exhibit certain tangen-
tial displacement and create inside the crack elongated
“waists” (either nearly contacting or already contacting) as
shown in Fig. 1. Inside liquid-saturated cracks, the so-created
narrow waist can act for fluid flows as a kind of valve near
which pressure gradients, flow velocities, and the correspond-
ing viscous dissipation in the crack should be localized. For
dry cracks, the thermo-elastic dissipation should also be
strongly localized and enhanced at the inner contacts. In the
vicinity of such wavy asperities, the local separation (or inter-
penetration) h of the crack surfaces is significantly smaller

a

FIG. 1. Schematically shown crack with wavy roughness at the interface (a)
that results in the creation of elongated (strip-like) contacts or waists (b)
inside the crack that may act as a kind of valve for the fluid flow if the crack
is liquid-saturated.
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than the average opening 4 of the crack. In contrast, the abso-
lute variation in the average opening % and in the local sepa-
ration / of loosely contacting crack surfaces are practically
the same, Ah ~ Ah. Due to this fact, the variations of the
contact pre-strain (or the narrow waist opening) can be
h/ h>> 1 times stronger perturbed than the average opening
that determines the loss at the whole crack.

After finding the acoustic loss at one crack the macro-
scopic logarithmic decrement 0 can be found as the ratio

Wo
2Wae ’

0(w) = o))

where the energy W is dissipated during one period in a unit
volume and W,. = K¢?/2 is the acoustic energy density
stored in the material with the modulus K. In the order-
of-magnitude estimates, it is not critical to specify which
particular modulus is chosen and to take into account the cor-
rection to the denominator related to the modulus reduction
(typically,”® of the order 10~") due to the presence of cracks.

lll. THERMOELASTIC LOSS AT INNER CONTACTS IN
DRY CRACKS

Unlike homogeneous materials for which thermoelastic
dissipation of elastic waves is often negligible, in solids with
microstructure (e.g., polycrystalline®®), thermoelastic dissi-
pation significantly increases due to the presence of small
(compared with the elastic-wave length) heterogeneities
that strongly increase temperature gradients. For crack-
containing solids, there is another factor that additionally
strongly enhances the thermo-elastic coupling: the stress-
and strain concentration at the crack perimeter as considered
in work.?” For the thermoelastic loss at the entire crack with
characteristic diameter L, the thermoelastic dissipation
exhibits maximum in the vicinity of the relaxation frequency
fi ~ k/(2npCL?), where p is the material density, C the spe-
cific heat per unit mass, and x the thermal diffusivity. For
millimeter-size cracks in rocks, this maximum corresponds
to frequencies in the range 107> — 10~' Hz. The analysis®’
was based on exact solutions for the stress-field distribution
near two-dimensional cracks represented as narrow elliptical
cavities. However, even without specifying details of a par-
ticular crack model and estimating temperature gradients
determined by the crack size in the low-frequency limit and
by the temperature-wave length in the high-frequency limit,
it is possible to evaluate the elastic energy loss using the
approach similar to that used by Landau and Lifshitz** for
polycrystalline solids.

We start from the thermal diffusivity equation for tem-
perature variations T with respect to the mean value T

o e
E —|— — AT vTo—= o

)
where y = K /(pC) is the Gruneisen parameter of the ther-
moelastic coupling, ur is the thermal expansion coefficient,
K is the bulk modulus, ¢ is the material dilatation, which for
the present approximate consideration can be identified with
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strain in the field of a compressional wave. The acoustic
energy loss due to irreversible heat flows can be found from

the integral**
ow K
o T J (v1) v )

Estimating the gradients in the crack from Eq. (2) and evalu-
ating Integral (3), we obtain the following approximate
expressions for the elastic energy dissipated by the crack
during one oscillation period, which well agree with the as-
ymptotic forms of the results presented in Ref. 27:

Wérack ~ zanO(M%Kz/K>L5827 for

< * )
[(0)] Wy <~ ——

LT ey
212 1/2

HF UK K 2.2
Wcrack ~ 2nTy /T)C [pC—w] Le, for o> y,, )
Wi & 21Ty (K> [pC)L*e,  for o~ wp,  (6)

where o is the circular frequency and wy, is the characteristic
circular frequency of thermal relaxation determined by the
characteristic diameter L of the crack.

Because we need Egs. (4) to (6) only for comparison
with similar equations for thermoelastic loss at inner contacts
in cracks, here, we only briefly outline their derivation. First,
note that for sufficiently low frequencies, the crack size L is
much smaller than both the elastic wave length and the ther-
mal wave length 1y, = [i/(Cpw)]"/?. Therefore, it is the
scale L that determines the gradients of the temperature varia-
tions in the elastic-wave field, VT ~ T/L Thus in Eq. (2),
we can estimate that AT ~ T/L* and 9T /dt ~ T. The con-
dition L < 4 is equivalent to o < o = x/(pCL?*) and
thus OT /0t < AT, so that the first term in Eq. (2) can be
omitted. Because J¢/0t ~ we, Eq. (2) yields the estimate for
the temperature variation T ~ wyToCpL? /. Then we esti-
mate integral (3) taking into account that the temperature gra-
dient f/L is localized in the crack vicinity within the
characteristic volume L*. Then one obtains OW /9t ~ *Tyy?
C?p>L’¢?. Finally, for the energy dissipated over one oscilla-
tion period 27 /w, we recover Eq. (4).

In the high-frequency limit when w > w; = x/(pCL?),
in contrast, the first term 8?/ Ot becomes dominant in~ Eq. (2),
so that the the temperature variations are adiabatic: T ~ yTye
and A, < L. In this case, the dissipation is mainly localized
in the near vicinity of the crack edge in which fairly universal
asymptotic behavior of strain®® has the form &, ~ &(r/L)~ 12,
Here, radius r is counted from the crack edge (and the angular
factor in this order-of-magnitude estimate is neglected).
When estimating Integral (3), we have to consider two regions
r > Ay and r < Ag. In the latter region, the formally infinite
strain &, ~ &(r/L)”"/ and strain gradient at » — 0 does not
cause divergence of the integral because the amount of the
generated heat is finite and is smeared within the region
r < Ag. As a result, both subregions r > 1, and r < 4, give
functionally identical and approximately equal contributions,
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so that OW /0t ~ kTyy*L?* /Ay, and for the loss over one pe-
riod, we recover Eq. (5). Finally, Eq. (6) can be found as the
crossover between Eq. (4) and Eq. (5) at w = wy.

To estimate the expected relaxation frequency, we can
take parameters x ~ 0.015 W/cm/K and p ~ 2.6 g/cm? typi-
cal of quartz-like rocks and consider cracks with L ~ 1 mm,
which yields f; = w/(2n) ~ 107! Hz. It has been estimated
in works®*?” that thermoelastic losses described by Eqgs. (4)
to (6) can account for the observed values of Q-factor in dry
rocks, especially for low seismic frequencies. On the other
hand, it is seen from Eq. (6) that the height of the relaxation
maximum is proportional to the cube of the characteristic
crack size L. Therefore, to explain the typically observed in
dry rocks values Q ~ 300 — 1000 for ultrasonic frequencies
and even for frequencies of the order of 10> — 10° Hz, it is
necessary to assume very high densities of very small cracks
(of micrometer scale); this, however, does not look realistic.

In this context, the above-mentioned narrow inner con-
tacts have much higher relaxation frequencies. However, the
question arises whether such contacts (the volume of which
is much smaller than that for the entire crack) can dissipate
an appreciable amount of the the elastic-wave energy. The
expressions for thermoelastic energy loss at the inner con-
tacts in cracks can be obtained much like Egs. (4) to (6) by
taking additionally into account the local concentration of
strain at the contacts (see Refs. 29 and 30):

WEE ~ 2noTo(uEK? /k)PLL*E?,  for o < o
K
N —— 7
oCP )

Wi~ (2m/w)kTo(urK /Cp)*Le(L/1)*E?,  for

> oy, (8)

W~ 20Ty (ubK?/pC)LL*E?,  for o ~ oy, )

cont

Here, L. in the length of the strip-like contact, / is its width
and the other notations are the same as for Egs. (4) to (6),
but the relaxation frequency w; is determined by the width
| < L of the strip-like contact. It is seen from Egs. (7) to (9)
that for frequencies much lower that the relaxation frequency
wy, the loss is growing as a linear function of w, and for
frequencies much greater than wy, the loss is inversely pro-
portional to . The asymptotic law ™! is similar to the
high-frequency asymptotic for spheroidal voids®’ rather than
flat cracks.

The most striking conclusion, which is seen from Egs.
(7) to (9), is that for a strip-like contact with a length L, ~ L,
the magnitude of loss in the vicinity of the maximum located
at w; > o is determined by the size of the whole crack
(because L.L ~ L*). Consequently the maximum loss at such
contact is of the same order as for the conventionally consid-
ered maximum for the entire crack [compare Egs. (6) and
(9)]. In contrast, the positions of the maxima w; ~ x/(pCI?)
and w; ~ x/(pCL*) on the frequency axis can differ in
orders of magnitude. Thus one crack of size L with a strip-
like contact L. ~ L of width / < L can produce near the
relaxation peak @, the thermoelastic dissipation comparable
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with the contribution of (L/I)* > 1 small cracks with the di-
ameter /. Taking again an example of quartz-like rock, this
difference is illustrated in Fig. 2 for L / [ = 102, which means
that one strip-like inner contact produces the same dissipa-
tion as 10° small cracks of size /.

Matching the asymptotic Eqgs. (7) and (8) and assuming
that the density of such cracks with inner contacts equals ny,
one can approximate the decrement defined by Eq. (1) in the
entire frequency range by the the frequency dependence typ-
ical of the classical relaxator:

2nToGKLL? /v .
pC 1+ (0/w)*

HCOI’H —

(10)

To find the overall decrement determined by the contribu-
tions of contacts with different parameters L, L., and /, we
have to integrate Eq. (10) over the distribution n(L, L., [), for
which it is reasonable to assume that the distribution over
the width / should be essentially independent of the distribu-
tion over L and L, so that n(L,L.,!) = n(L,L.)n(l) and the
averaging takes the form

00011[

n(L,L.) n(l) dLdL.dl.

_ 2nTouzK J LL*w/w
pC 1+ (0/w)?
(11)

We note that a wide distribution n(/) can strongly smooth
the frequency dependence of the dissipation resulting in
nearly constant Q-factor even without assuming very high
densities of tiny cracks.

It is seen from the structure of Eq. (11) that the height of
the relaxation peak and its location on the frequency axis are
quite independent because they are determined by essentially
different parameters (L and L. for the peak height and / for
the position). Evidently, for sufficiently small variation in
the average strains and stresses, the width of the contacts can

(L/l)3 times

AW, arb. units
)

(L/l)2 times o

\
1
1

7 // TS~
107 “——rrrrm—rrre—r S S —— T,

10° 10 10" 10° 10" 10* 10° 10 10°
Frequency, Hz

FIG. 2. Schematically shown relative positions and heights of the thermo-
elastic relaxation peaks for the crack of size L as a whole (curve /), for the
inner strip-like contact of width / < L and length L. ~ L (curve 2), and a
peak similar to curve /, but for a small crack of size [ (curve 1'). It is
assumed that L = 1 mm and //L ~ 1072
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already be significantly perturbed, whereas the length of the
contact and the average opening of the crack can be only
slightly affected. This can result in the displacement of the
relaxation maximum on the frequency axis almost without
affecting its height as illustrated in Fig. 3 for the case of
identical contacts. To estimate how strongly the frequency
w; ~ x/(pCI%) of the maximum of the thermoelastic loss at
such a contact can be perturbed by variation in the mean
strain in the material, let us use the presented in Landau and
Lifshitz** solution for the width of the contact between two
compressed aligned cylinders:

_(16DF RR' \'’
A0S rer) (12)

where D = (3/4)[(1 — ¢*)/E + (1 — ¢"*)/E], o, and ¢’ are
Poisson’s coefficients of the materials of the cylinders, £ and
E' are the Young’s moduli of the cylinders, and F is the spe-
cific force per unit length of the contacts. In the case of iden-
tical materials with the same accuracy that corresponds to
Egs.(7) to (10), we can consider that D ~ 3/(2E) and the
force F per unit length for a contact of length L. can be
expressed as F = F,. /L., where F. is the total force applied
to the contact. Then from Eq. (12) we obtain

P ~ (16F.R)/(nELL). (13)

For the force F. applied to the inner contact in a crack, an
approximate expression F./L.~ ¢EL*/(L+L.) can be
0btained,30 where ¢ is the mean strain in the material. Then
taking into account that 1/2 < L/(L +L.) < 1, one obtains
from Eq. (12) the following approximate expressions:

l2zl—6 L e¢RL
nlL+ L. (14)
8 Aol A(P) RL
~ —¢RL,|—| = ~ Ae— .
zo oy 2 iy

This expression clearly elucidates the reason of the extremely
high sensitivity of 2 (and, consequently, variations in wy)
with respect to the variation A¢ in the mean strain. Indeed,
the wavy asperities at the crack interfaces often have radius
comparable with the characteristic diameter of the entire
crack (R ~ L), whereas the width of the inner strip-like con-
tact often does not exceed the average opening % of the crack.
Therefore, taking into account the above-discussed character-
istic values of the crack aspect ratios, we conclude that the
factor RL/I?> in Eq. (14) can easily be as great as 10°—108.
This means that even variations in the mean deformation
(which are conventionally considered unable to appreciably
influence acoustical parameters of solids) actually can be
able to significantly change the width of inner contacts and
affect the near-contact acoustic loss (see Fig. 3).

Estimating the overall sensitivity of the thermoelastic
dissipation to the mean strain it is necessary to take into
account that conventionally considered thermoelastic losses
at the crack as a whole®’ also contribute to the total decre-
ment. We have, however, to recollect that the characteristic
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FIG. 3. Variation in the shape 0(w) of the normalized relaxation peak for
an inner contact (curves / and 2) due to 15% variation in the contact width.
The variation Af in the decrement has opposite signs at the opposite sides
from the maximum and peak-to-peak excursion about 15% (curve 3).

relaxation frequencies w; ~ x/pCI?> and w; ~ x/pCL* are
related as (L/I)* and the high-frequency thermoelastic loss
at the whole crack decreases as (w/ wL)fl/ ? [see Eq. (5)] as
illustrated in Fig. 2. Then near the relaxation maximum @;
we found that the ratio of the contributions of the loss
O1oc (0 = ;) at the inner contacts to the conventionally con-
sidered “global” loss Ogion (0 = ;) at the cracks as a whole
has the form

0100((’0 = (1)[) ~ ﬁ(l‘ <(l)[) 1/2~ ﬁcrL

~ N —— 15
Hglob(w = CU]_) Ner \ L Her l ’ ( )

where 7. and n,, are the densities of cracks with and without
inner contacts, respectively. Because L/l > 1, it is clear that
even a small portion (e.g., a few percentages) of cracks with
narrow strip-like inner contacts can ensure near w = ®; the
same contribution to the decrement as the conventional
global mechanism of thermoelastic dissipation at whole
cracks. Therefore, even quite a small portion of cracks with
contacts can provide the above-discussed extremely high
sensitivity of the dissipation to small variations in the mean
strain in the material.

Even putting aside somewhat exotic manifestations of
the giant stress-sensitivity of the dissipation and considering
only its mean value, it can be emphasized that in the audible
and ultrasonic ranges typical of laboratory studies, inner con-
tacts can ensure a fairly strong contribution to dissipation
comparable with the estimates obtained in works**’ for the
global thermoelastic loss at a crack as a whole for lower fre-
quencies, which showed a reasonable agreement with the ex-
perimental data.

IV. VISCOUS LOSS AT FLUID-SATURATED CRACKS
WITH INNER STRIP-LIKE WAISTS

Now let us consider viscous dissipation in cracks con-
taining liquids. There is general agreement that along with
the dissipation due to global fluid flows in pore channels
(Biot’s mechanism), an important role in the elastic-wave
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energy dissipation in rocks belongs to the local (or “squirt’)
flows inside cracks.’'** For the Biot flows, sizes of pore
channels with aspect ratios about unity weakly depend on
the average strain and stress (except of the case™ of Pois-
son’s ratio close to 0.5, which is irrelevant to rocks). It is the
squirt-type dissipation in relatively soft narrow cracks that
demonstrates much higher sensitivity to the variation in the
mean strain in the material. In what follows, we focus on
new important features of strain sensitivity of the squirt
mechanism in the case of cracks with wavy asperities of the
interface.

To estimate the viscous loss in narrow cracks with
nearly parallel surfaces, we will use the integral expression*
for the rate of kinetic energy dissipation in a flow of a vis-
cous fluid between parallel solid planes:

. 2
Wian __1 J (a”") av. (16)

ot 2 )\ Oy

In Eq. (16) over the volume of the flow, y axis is orthogonal
to the interface, v, is the X component of the liquid-flow ve-
locity, and # is the viscosity. The integration should be made
over the volume of the flow. Using Eq. (16), we first estimate
the amount of energy W, dissipated in a unit volume over
one period. The form of Wj(®) can again be understood by
using asymptotic estimates by analogy with in the previous
section considering now the linearized Navier—Stokes equa-
tion for v,:

0 Uy o @ 82 Ux

Por = “ax T Ta

a7

where p is pressure. In view of similar structures of Egs. (17)
and (2), the roles of the diffusive term and the term with the
time derivative can be estimated in a very similar way.

To better delineate the place of our mechanism in the
context of conventionally discussed ones, we first recall how
the well-known properties of the global Biot loss in fluid-
filled channels can be derived from very simple arguments
similar to those used in Ref. 35. For low acoustic frequen-
cies, the role of the first inertial term in Eq. (17) is negligi-
ble, so that |9p/dx| ~ [n0?v,/dy?|, which corresponds to a
fluid motion as a parabolic Poiseuille flow in the channel.
Thus the velocity gradient is determined by the entire chan-
nel thickness H, 0°v,/0y* ~ v,/H?, and is frequency inde-
pendent. The fluid velocity v, in the Poiseuille flow is
induced by the gradient of the acoustic pressure p,., which is
determined by the acoustic wave length A, oc w™!, so that
Uy X Op/OX ~ Puc/ A < @. Taking into account that Integral
(16) is evaluated over a frequency-independent volume of
the flow, the corresponding loss over one period 27/ is
Wo o (21/w) - w?, so that O(w), - o< w.

With increasing frequency o, the first inertial term in
Eq. (17) increases and becomes comparable with (and even
greater than) the viscous term. This happens when |wpuy,|
~ |nv./H?|, i.e., for the characteristic frequency

D ~ n/(sz)u (18)

6 J.Acoust. Soc. Am., Vol. 131, No. 1, January 2012

which is often expressed in a more indirect way via the ratio
of porosity to permeability instead of the use of the character-
istic width of the channels. The representation of w, in Form
(18) is especially physically clear and means that the viscous
wave length e = (217/ pa))l/ % becomes comparable with
H. For w > w,, the velocity gradient becomes localized near
the walls within the viscous layer i < H, which deter-
mines the flow-velocity gradient, and we have (dv,/dy)*
o< (a)'/ 2)2 o @. Next, because the last viscous term in Eq.
(17) now can be neglected, we see that the velocity v,
becomes proportional to the acoustical pressure amplitude
Dac Without any frequency-dependent factor because dv, /0t
x wv, and Op/Ox ~ puc/ ey X @ both are proportional to .
Besides, in integral Eq. (16), the intergration should be made
only within the viscous layer with the thickness ~ Ayis
o w~'/? (where the gradient is localized) rather than over the
entire volume of the fluid flow. The resultant frequency de-
pendence of Integral (16) has the form w~'/2(w!/2)* = w!/2,
The latter estimate should be multiplied by the factor 27/w
to find the energy loss W4 during one period, so that for
w > w., we obtain the asymptotic frequency dependence for
the decrement: 0(w)"" o (2n/w)w'/? x @ /2. Thus we
recovered the well-known asymptotic dependences of the
decrement 0(®) due to the Biot flows in the pore channels.

Let us now turn to narrow cracks, which are much softer
objects and can exhibit stronger stress-dependence. The
above-considered arguments based on the Poiseuille-flow
approximation in the low-frequency limit remain very simi-
lar for flows in cracks and predict the same asymptotic
behavior of the decrement 0(w), . x . As was mentioned
in Ref. 32, the localization of the shear-flow gradients within
a narrow viscous layer ~ Ay for sufficiently high frequen-
cies may also be applied to cracks, but the characteristic fre-
quency is much higher because the crack opening % is much
smaller than the diameter H of the pore channels. However,
in contrast to rigid pore channels, cracks are much softer
objects'* with a characteristic own modulus aK < K. For
cracks, the aspect ratio o ~ /L plays the role of their soft-
ness parameter: Due to their planar geometry cracks are
roughly o~! times more compliant than the surrounding ma-
trix with respect to both compression and shear.

Thus for soft crack-like pores, another characteristic
relaxation frequency appears that physically corresponds to
the condition that under sufficiently high-frequency oscilla-
tions, the viscous resistance to crack shearing becomes com-
parable with the elastic response of the crack to shearing.
Namely, under tangential displacement Ax of the center of
the crack, its shear elastic reaction apAx/h should be com-
pared with the tangential viscous stress nwAx/h. This yields
a characteristic frequency

wq ~ op/, 19)

which was pointed out, for example, in Ref. 36. Now we
note that for geophysical materials, typically the values of
the shear modulus p and compression modulus K are of the
same order, and the corresponding wy is relatively high. For
example, for viscosity 7 = 1073 Pa - s typical of water, mod-
ulus u ~ 101N/ m’ typical of rocks and quite narrow cracks
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with o ~ 1073 — 10~* we obtain w,; ~ 10° — 10'° rad/s rele-
vant only to ultrasonic laboratory studies but not to the dis-
cussed seismo-acoustic data,'''>""

One more characteristic frequency can be obtained in a
similar way but considering the viscous resistance of a
crack-like defect to compression in the direction normal to
its plane. This viscous resistance should be compared with
the elastic reaction of the crack also in the normal direction.
To estimate the normal viscous resistance, we have to sup-
plement Eq. (17) with the continuity equation

v, Ovy
O + (9_y =0, (20)

because in the first approximation, the liquid can be consid-
ered incompressible. For the discussed nearly Poiseuille flow,
0v,/0x ~ vy/L and Ov,/dy ~ vy/h, so that from Eq. (20) we
obtain v, ~ (L/h)v,. Because the variation Al of the crack
opening in the acoustic field corresponds to v, ~ wAh, we
find that v, ~ (L/h)wAh. Next, in Eq. (17), we can similarly
estimate that Op/Ox ~p/L and 5d*v,/dy* ~ no./h>.
Neglecting the first inertial term in Eq. (17) for the Poiseuille
flow and equating the above-estimated terms in the right-hand
side of Eq. (17), we obtain the estimate for the pressure p¥*
induced by the viscous flow of the liquid in the narrow gap:

pvisc ~ ﬂl)x(L/hz) ~ nw(L/h)z(Ah//’l) (2D

For the application to real cracks, it is important to under-
stand how critical is imperfect parallelism of the crack surfa-
ces (which for real cracks is rather a rule). Assuming that the
crack opening has the values 4, and h; at the opposite sides,
we conclude that, in the extreme case when at one side the
hy = 0, the maximal non-parallelism angle is of the order
h/L ~ o, where h is the average crack opening. This small
non-parallelism is not important for the above-obtained esti-
mates of the terms entering Egs. (17) and (20) and conse-
quently estimate Eq. (21).

On the other hand, one may argue that this non-
parallelism leads to the fact that the shear viscous force acting
along the inclined wall has a component normal to the crack
plane. The viscous stress 7" acting along the inclined plane
is readily estimated as tV%¢ ~ nu, /h ~ n(L/h)wAh/h, so that
its normal component is 7/%¢ ~ t¥°0 ~ ywAh/h. Comparing
the estimated normal component 7V and Eq. (21) for the
pressure due to the viscous flow, we see that p'*¢ is
1/o? >> 1 times greater than tV*°. Thus the contribution 7Y%
of the eventual non-parallelism to the normal viscous stress is
not significant compared with p¥*, and we can use Eq. (21)
for the normal viscous reaction even for cracks with not per-
fectly parallel surfaces.

Now we have another question: What is the elastic reac-
tion that should be taken for comparison with the precedingly
found value [Eq. (21)] for the viscous normal resistance. In
literature different variants can be found. One variant is by
analogy with obtaining Eq. (19) to compare Eq. (21) with the
normal elastic reaction ~ aK - Ah/h of the crack related to its
effective compression modulus ~ K. The latter value corre-
sponds to the well known rule of thumb®* that the effective
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softness relatively to the matrix material for a crack approxi-
mately equals its aspect ratio. This comparison gives us some
characteristic frequency often discussed in literature®

wxg ~ °K /1. (22)

Less formally, it can be said that the viscous flow pressure
p¥¢ arisen due to approaching of the crack surfaces by Ah
[see Eq. (21)] becomes so high that the near-crack region of
the size L (where the elastic stress was initially nearly
released) experiences compression by the value Ah* ~ p‘is
/(KL). For o ~ wg, the value of Ah* becomes comparable
with the initial approaching Ah and strongly compensates the
latter. If the crack is “instantaneously” compressed, initially
the liquid remains almost “frozen” and then is redistributed
during the characteristic time 1/wg when the elastic compres-
sion Ah* of the near-crack region gradually releases. For suffi-
ciently high frequency ® > wg, the actually displaced
volume of the liquid is equal to a small fraction wg/w of the
volume that would be quasistatically displaced, so that if the
flow structure remains of the Poiseuille type, the amount of
the dissipated energy W, during one period decreases as
(w/wg)~". This observation will be used in the following text
to estimate the absorption above the relaxation maximum.

It can also be pointed out that besides the relaxation fre-
quency given by Eq. (22), another relaxation frequency for
cracks filled by compressible fluids is also discussed.”!
Namely, in view of the fact that modulus K; of the filling
fluid typically is at least an order of magnitude smaller than
modulus K, it can be argued that the surrounding rock in the
first approximation compresses the fluid as “absolutely rigid”
body. Thus comparing the pressure of the compressed fluid
KyAh/h with the precedingly found normal viscous reaction
[Eq. (21)] of the fluid flow, we obtain another characteristic
frequency , ~ Kyo?/n, which is determined by the com-
pressibility of the fluid and in contrast to Eq. (22) does not
depend on the modulus of the rock.*” This new relaxation
frequency differs from wg given by Eq. (22) by a factor of
K;/(Ko). For narrow cracks with o < 1 and typical liquids
like water or oil, for which K /K ~ 107!, the factor
Ky/(Ko) is quite large, so that @, > wg. In such a case,
long before the frequency w, would be attained, the fluid
flow should already be strongly damped for @ > wg because
of the finite rigidity of the near-crack region as discussed in
the preceding text. Therefore the initial low-frequency as-
ymptotic o< « cannot be extrapolated till the frequency
o, > wg. Consequently, the new (and potentially stronger)
relaxation maximum near o, simply will not be formed for
typical liquids (like water and oil), for which Ky /(Ka) > 1.
Only for sufficiently high-compressible (gaseous) fluids with
K;/(Ko) <1 this mechanism should form the relaxation
maximum near ®,. But in this case, the relaxation frequency
o, should necessarily lie lower than wg.

Less formally, the physical meaning of this type of
relaxation is that a finite time is required for a compressible
fluid squeezed inside a crack to form the flow that redistrib-
utes the fluid and equalizes the internal pressure. In any case,
the character of such flows can noticeably be perturbed only
if the mean opening of the entire crack is perturbed. This
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means that the mean perturbing strain should already be
comparable with o like for the above-considered global ther-
moelastic loss.

In what follows, we consider a modified form of the vis-
cous loss in cracks with wavy roughness of the surface. This
mechanism relates to the conventionally considered viscous
loss at cracks much like the thermoelastic loss at the inner
contacts relate to the thermoelastic loss at a crack as a whole.
We show that even for “normal” liquids, the new strongly
shifted to lower frequencies and very intense relaxation peak
is related to the fluid compressibility rather than compressi-
bility of rock in the crack vicinity. Besides, which is espe-
cially interesting, the stress sensitivity of such a mechanism
can be additionally enhanced orders of magnitude and can
readily explain the experimental data discussed in the
introduction.

Consider a crack with a waist’ created by wavy asper-
ities as shown in Fig. 4. The notations used are clear from
the figure. Here, quantities P; characterize the pressure in the
respective cross sections of the crack. Assuming again the
Poiseuille character of the flow for sufficiently low frequen-
cies, the nearly plane fluid flow ¢ = L. x(y)dy in the main
part of the crack and in the narrower region of the waist
should be equal:

 WL.P,—P, KWLP3;—P,

= = - 23
12n L 127 [ 3)

q

where the meaning of the pressure gradients (P, — Py)/L
and (P3 — Py)/l is clear from Fig. 4. Then Eq. (23) yields

P,—P, KWL
Py—Py, W[’

(24)

so that for sufficiently narrow waist in the crack,
(W /W3)(L/I) < 1, we conclude that (P, — P}) < (P3 — Ps)
~ APy, that is, the total drop APy, of pressure is mainly
localized in the region of the narrow waist. Now imagine an
instantaneous slight compression of the crack under an exter-
nal action after which the fluid compressed inside the crack
flows through the narrowing into the outer region to equalize
the pressure. This flow will exponentially decrease with a
characteristic relaxation time t. Consequently the total vol-
ume ¢, of the leaked fluid during this relaxation process is
given by the integral®’

P PP P =P

1 2 3 4 0

FIG. 4. Schematically shown crack with a narrow strip-like waist created
by wavy asperities. The dominant part of the total difference in the pressure
|Py — P4| in the fluid flow is localized near the narrow waist, so that
|Py — P4|/|P3 — P2| = 1. Py is close to the equilibrium pressure Py in the
outer pore channel.
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q. =q JOO exp(—t/t)dt = qr, (25)
0

where ¢ is the flow value corresponding to the initial excess
of pressure inside the crack over the pressure in the outer
space. Because the rigidity of the outer pore space is much
greater than that of the thin crack, the relative change in the
volume of the crack is much greater than that for the outer
rigid pore channels. Consequently, the outer pore pressure
remains close to its equilibrium value Py, and we can con-
sider that P; — P, ~ Py — P4~ Py — Py. Thus from Eq.
(23) the initial value of the flow is

_WL.Py—P, IPL.P,— P
S 1 T 12p ]

q . (26)

Because the variation y in the volume of the liquid and the
pressure P are related via the bulk modulus Ky of the liquid,
P = 7Ky, then the total liquid volume g, = gt displaced in
order to equalize the pressure can be written via the initial
volume C of the fluid-filled crack as

g = Co(x1 — 10) = CoK; ' (P1 = Po). 27)

Equations (26) and (27) yield

_ PLK (10— %)

& Co(x1 — Xo)- (28)
Assuming that the sizes of cracks along x and z directions
are of the same order L, ~ L, the crack volume can be esti-
mated as Cy ~ hL?, so that from Eq. (28) we readily obtain
the relaxation time 7 and its inverse value, i.e., the relaxation
frequency @, (tilde denotes that we consider the crack with a
narrowing):

2[(_ A 37
oy = 2K (ML g e 120 (D (29)
12n \h w?Ky \h) L

Here we intentionally singled out the squared aspect ratio
o for convenience of comparison with the crack without
waists.>' The absence of the narrow waist can be interpreted
as [~ L and i~ h, ie., (h/h)’I[/L ~ 1, so that Eq. (29)
reduces to

_ Ky

121
w, = ; ~
129

~ —asz .

and 7T (30)

Within the accuracy of its derivation, Eq. (30) coincides
with the result T &~ 857/0°K; obtained in Ref. 31 for narrow
cracks without the waist.

The relaxation times in Egs. (29) and (30) do not depend
on the elastic modulus of the solid matrix. However, we
have already mentioned that for cracks with uniform open-
ing, the relaxation peak [Eq. (3)] can actually be formed
only for very highly compressible fluids (i.e., gases rather
than liquids), for which Ky /K <&, otherwise the
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compressibility of rock in the crack vicinity should dominate
and form the relaxation peak near wg given by Eq. (22).

In contrast to this, the presence of the narrow waist cre-
ates a strong obstacle for the fluid leaking. Therefore, for a
given frequency, this increases the role of the liquid com-
pression, whereas the pressure p'**¢ and the deformation of
the rock in the crack vicinity is strongly reduced. All this
results in a very strong reduction of the relaxation fre-
quency o, related to the compressibility of the fluid [com-
pare Egs. (30) with Eq. (29) containing the additional small
factor (h/h)’I/L < 1]. Thus even for “normal” liquids like
water and oil, the frequency @, of the new relaxation maxi-
mum becomes comparable and even lower than wg, that is,
shifts from ultrasonic frequencies to the seismoacoustic
range directly relevant to the experiments'''*~'¢ discussed
in the Introduction.

Compared with the mean crack opening /4, the local
opening & of the waist is much more sensitive to variations
in the mean strain in the medium.

Therefore it is not necessary to assume the existence of
unrealistically thin cracks to ensure the same sensitivity for
the mean opening of the crack. The conditions ensuring the
Poiseuille type of the flow are even better fulfilled in the vi-
cinity of the waist, so that we can apply the considered in the
beginning of this section arguments concerning the low- and
high-frequency asymptotic behavior of the energy loss Wy
per one period (proportional to w and 1/w, respectively).
This means that the dissipation due to the discussed mecha-
nism can be well approximated by the frequency dependence
for a standard relaxator:

/o,

~ Oy ———,
1+ (0/a,)

€1y}

where the relaxation frequency @, is given by Eq. (29) for a
crack with a narrow waist.

Now, using Eq. (16) we will determine the prefactor 0
in two cases: for a crack with the narrow waist and for a sim-
ilar in size crack with uniform opening, although in the latter
case, the formation of the relaxation peak m, can be possible
only if K¢ /K < a, that is, for gaseous fluids (or for unrealisti-
cally rigid solid matrix in the case of normal liquids). Never-
theless, such an expression will be useful for comparison.

The velocity profile for the Poiseuille’s flow in the crack
with uniform opening % has a parabolic form

1 0P y(h—y)

Uy = ——n—y(h —y) = —40max o (32)

where vyax = —1/85|0P/dx|h* is the maximal velocity of
the fluid in the flow. Similarly, for the narrow waist, where
the losses and gradients are localized, we have

. l1opP - o y(i;—y)
Ux = 2 axy(h y) = —40max 2 ) (33)

where max = —1/85|0P/0x|h*. Equations (16), (32), and
(33) yield for OWy;, /0t the following expressions in the dis-

cussed two cases of the crack without and with the waist:
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aV[/kin _ 8 1)2 L,\‘Lz
o 3’1 maxp

(34)

Win 8 L

(35)

o 3y

In the estimates in the following text, we will assume that
Ly~L,~L.

Let us now relate the parameters of the flow with the
mean strain in the crack-containing solid. When the mean
macroscopic strain ¢ is created in the material, the crack vol-
ume correspondingly changes, which creates the flow of the
liquid inside the crack. We recall** that the crack is a soft
object the relative (compared with the surrounding matrix)
compliance { of which is approximately equal to the crack as-
pect ratio, { ~ o ~ h/L. Therefore the own strain ¢ of the
crack (i.e., the relative variation in its volume) can be esti-
mated as &, ~ ¢/o ~ eL/h, where L is the characteristic size
of the crack. For the crack volume Cj, we already used the
estimate C ~ L*/ in the discussion of Eq. (28). Then for var-
iation ACy, one obtains ACy = &.,Co ~ eL*h - (L/h) = eL>.
Under sinusoidal oscillatory variation of the crack volume
with frequency o and amplitude ACy, we can readily relate
the rate wAC, of the crack-volume variation with the maxi-
mum velocity of the Poiseuille’s flow of the fluid inside the
cracks without and with the waist:

3 wel?

Umax = ET (36)
3 wel?

6max = Ew% . (37)

Substituting these expressions into Egs. (34) and (35) for
cracks without and with the waist, we relate the period-
averaged amounts of the dissipated energy with the ampli-
tude of the mean strain &:

OWiin LS
( a: ) = —311w282h—3, (38)
OMWiin L5
( 8: > = —31’]60282ﬁ. 39)

In Egs. (38) and (39), we took into account that for sinusoidal
strain with amplitude ¢, the period-averaged value of its
square equals &/2. We also take into account that the
energy loss during one period T =2n/w is Wy = (2n/w)
(OWkin/Ot) 1ep» and the density of the accumulated elastic
energy is W, ~ K¢*/2 (because in the used approximation,
we assume that the elastic modulus does not significantly
change due to the presence of the cracks). Then from Eq. (1)
we obtain the following asymptotic low-frequency expression
for the decrement in the case of cracks without the waists:

6

L
O = 671y ﬁ Ner@. (40)
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The low-frequency Eq. (40) is obtained neglecting the liquid
compressibility and agrees with the low-frequency results
earlier derived for cracks without waists.>

To find high-frequency expressions (for @ >> w,), we
recall that because of the finite relaxation time, the volume
of the replaced liquid is @/®, times smaller than in the low-
frequency limit. Thus the high-frequency expression for the
cracks without the waists is

L6 (D,2 T 3 Kf ()%
OHF = 67'511@}’1(7‘(0& = El’lc,‘L &E . (41)
For cracks with the waists in a similar way, we obtain:
- LS (1.
Opp = 611 P (Z >ncrw7 42)
~ Lo (I @ n_ LK,
Oy = 6nn— | = | Ay —L = =71, —L . 43
HF 7”7h3K<L>’7,0)w2 Sl — o (43)

Comparing Egs. (40), (41), and (42), and (43) with the low-
and high-frequency asymptotics of Eq. (31), we obtain the
following relaxator-like expressions for the viscous loss at
cracks without and with the waists, respectively:

KL \
=S, o/e (44)
o 1+ (o/w,)
- kL3 oy
KL, /o (45)

Nep P s
2 Ko 14 (/d,)?

where o, and @, are given by Eq. (29).

A striking feature of Eqs. (44) and (45) is that they have
the same maximum values determined by the characteristic
size L of the whole crack. However, the relaxation frequency
in Eq. (45) is strongly shifted from ultrasonic to seismoa-
coustic frequencies down to 10° — 10? Hz that were used in
field experiments.' 1216

The next point is that much smaller average strains
(e.g., the above-discussed tidal strains) can already notice-
ably affect the opening of the waist. This means that due to
the variation in the relaxation frequency w, for the crack
with the waist, the position of the relaxation maximum can
noticeably be changed, whereas the height of the relaxation
maximum should remain yet practically unperturbed. Taking
into account the equality of the absolute variations Ah ~ Ah
and the relationship ¢, = ¢/a = eL/h (which we have al-
ready used in the preceding text), we find the relative varia-
tion in the relaxation frequency @, caused by the variation
Ag in the mean strain:

do, 1 3h 3n1
@ o, 6h(/) e 4O

Ao, /o, = Ae

The parameter (34/h)/o can be very large, for example,
(3h/h)/o. ~ 10° for quite realistic o~ 10~* and (h/h)
~ 20..30. Thus the tidal strains with amplitude &y ~ 10~ can
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cause the peak-to-peak variation in the relaxation frequency
2Am, /o, of several percent and, consequently, comparable in
magnitude variation 2A§/ 0 of the decrement at the wings of
the relaxation curve.

In addition, there are known experimental indications
that for flows in very narrow gaps (down to nanometer
scale), the effective viscosity of the liquid can noticeably
exceed the viscosity for macroscopic gaps.*®*® This effect
can additionally enhance the variations in the dissipation due
to variations in the waist opening. Because small variations
in the average strain practically do not yet affect the average
aspect ratio for the crack, the prefactor in Eq. (45) remains
almost unchanged. Thus the shift of the relaxation maximum
can cause the variation in A of opposite signs depending on
the position of the observation frequency o relative to the
frequency , of the relaxation-curve maximum. The similar
feature for the thermoelastic loss is illustrated in Fig. 3.

Because not all cracks have the strip-like waists, the key
question is how many such cracks are required to ensure near
the characteristic frequency @, the dissipation 0 ~ 1072
—10~" typical of rocks. For @ = @,, Eq. (45) yields the fol-
lowing estimate of the loss

0 77TKfL3~ T Ky .

max — 4Encr - ZEF’ (47)

where we singled out the quantity & = L%i.,. The latter is
close to the effective volume of cracks*’ (i.e., the volume of
the circumscribed spheres independent of the cracks’ aspect
ratios). For further estimates, we will use the well known
fact that the presence of cracks with the effective volume &
results in reduction of the elastic moduli of the material by a
fraction of a¢ (where factor a ~ 1 slightly differ for particu-
lar moduli*’). Then taking for filling water Ky =2.25-10°
Pa, modulus K =3.8-10'" Pa _typical of quartz, and
x=10"3—10"%, we find that Op. =~ (50 — 500)é. This
means that for the effective crack density ¢ = 1072 — 1073,
which reduces the elastic moduli also by a fraction of order
1072 — 1073, we can already obtain 6 ~ 1072 — 107! in the
vicinity of the relaxation frequency @,. On the other hand, it
is well known that, e.g., in real sandstones, the modulus
reduction due to soft crack-type porosity can be on the order
of tens of percentages.® This means that even if only a small
portion of all cracks (a few percent or even less) has wavy
surfaces creating the narrow waists, this portion can already
be sufficient to explain both the background value of dissipa-
tion observed in the seismo-acoustic frequency range
10° — 10° Hz and its extremely high strain-sensitivity indi-
cated by the experimental data.'"'>'®

Therefore the considered modified mechanism of the
squirt-type dissipation in cracks suggests a plausible alterna-
tive explanation to the experimentally observed rather high
dissipation in the seismoacoustic frequency range. In terms
of Ref. 41, our mechanism is of purely “microscopi” type
and does not require the presence of larger-scale (mesoscale)
heterogeneities assumed in the “patchy saturation” models to
shift the frequencies of viscous relaxation towards the seis-
moacoustic frequency range. Certainly such mechanisms can
operate simultaneously. However, among those possibilities,
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only the above-considered modified squirt mechanism is evi-
dently able to ensure sufficiently high strain sensitivity to
explain the observations.'""'>1

To better understand the ratio of contributions of the
conventional and the proposed modified squirt mechanisms,
let us compare the corresponding decrements given by Eqs.
(44) and (45) in the vicinity of the characteristic relaxation
frequency @ ~ @, of the cracks with the narrow waists.
Because , < @,, for this comparison, we take the low-
frequency asymptotic form of Eq. (44), such that in the vi-
cinity of @, we obtain

00 ~ &) ~ 2220, (48)
Nep Qy

where the difference in the relaxation frequencies w and @,
[see Egs. (29) and (30)] can be rather large: w/w,
= (h/h)*(I/L) > 1. The factor (h/h)*(I/L) can easily reach
10°-10%, so that quite a small portion of cracks with narrow
waists can ensure in the low-frequency range a contribution
comparable with or even strongly exceeding the contribution
of the majority of other cracks of the same size but without
the waists. For example, a portion 7, /n, ~ 1072 — 10~* of
cracks with narrow waists is already able to ensure
extremely high strain-sensitivity of the overall decrement in
the seismo-acoustic range.

Figure 5 illustrates the relative positions and heights of
the relaxation peaks corresponding to the relaxation fre-
quency o, [Eq. (29)] for a crack with a narrow waist, and
the peaks at frequencies wg [Eq. (22)] and o, [Eq. (33)] for
cracks with the same aspect ratio « and size L but without
waists. We emphasize that for wg < o,, the relaxation peak
at o, actually does not exist and is shown by the dashed line.
However, it is shown for convenience of comparison with
the low-frequency peak @,, for which the height is the same
as for the would-be peak at @,. The figure demonstrates that
the viscous relaxation in cracks with the waists can form

10°
)/\1~//-\\
7
10"
.
B 102 B
gy AN
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) N
§ 10’ P
z < \
< s
10" e~
hIhy>d/L) times \
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Cyclic frequency, rad/sec

FIG. 5. Schematically shown relative positions and heights of the viscous
relaxation peaks at o, and wg for the crack as a whole (curves / and /) and
the low-frequency peak for a crack of the same size L having an inner nar-
row waist with the local opening /i and length [ (curve 2). The examples cor-
respond to (i/h)*(I/L) = 10* and o = 1073,
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extremely strong peaks in the seismo-acoustic frequency
range, so that even for small density of such cracks, their
contribution can easily account for the typically observed
levels of the dissipation in this frequency range.

Concerning the question of averaging over the distribu-
tion of real cracks over their parameters, we can put forward
very similar arguments as for Eq. (11) in the above-
considered case of thermoelastic loss. Namely, it is reasona-
ble to assume that the distributions over the sizes L and & of
the crack as a whole and the distribution over the local pa-
rameters 4 and [ of the waist (which determine the character-
istic relaxation frequency @,) are essentially independent
and can be factorized. Therefore the averaging over the char-
acteristic size L of the crack gives only a numerical factor
like in integral Eq. (11), whereas the averaging over the
relaxation frequencies (of, equivalently, the relaxation times)
can also be performed independently. Such averaging should
not radically change the conclusions obtained for the sim-
plest case of cracks with identical parameters of the inner
contacts or waists.

V. CONCLUSION

The performed analysis of the role of elongated inner
contacts and waists in cracks significantly changes the con-
clusions based on conventionally discussed models of ther-
moelastic dissipation at cracks (like Refs. 23 and 27) and
viscous squirt loss (like works 25, 31, 32, 36, and 41). Thus
a single larger crack with a strip-like contact can ensure the
same thermoelastic dissipation as 10° — 10° small cracks of
the size equal to the contact width.

For fluid saturated cracks, a rather intense maximum
formed by a crack with a narrow waist can ensure the same
dissipation in the seismo-acoustic frequency range of
10? — 10° Hz as a similar crack without the waist would pro-
duce in the ultrasonic range according to conventional
squirt-dissipation models (see Fig. 5). This can substantially
affect some conclusions*' on insignificant role of local vis-
cous loss at cracks in the seismo-acoustic range.

Probably the most striking feature of the considered
modified dissipation mechanisms is their giant strain sensitiv-
ity. In this context, it should be clearly understood that each
group of cracks with the wavy asperities can exhibit this giant
strain sensitivity only in a rather narrow strain range. When
the waist becomes either completely closed or widely open,
the loss at such cracks does not much differ from that at
cracks without the asperities. Nevertheless, because the pa-
rameters of real cracks should have a rather wide distribution,
for a current mean strain, another portion of cracks with such
narrow waists or contacts can be “activated.” This resolves
the problem'* of how apparently very soft defects exhibiting
giant strain sensitivity can exist under very different mean
pressures (in a wide range of depths in field conditions). Their
giant effective compliance should be understood as differen-
tial. It cannot be directly extrapolated for significantly higher
strains 107% — 10~ quite typical of laboratory experiments or
real tectonic strains. For such strains, the dissipation does not
change many times, although for 10~® the variations may al-
ready reach several percentages.
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